In this manuscript, a new parametric class of iterative methods for solving nonlinear systems of equations is proposed. Its fourth-order of convergence is proved and a dynamical analysis on low-degree polynomials is made ...
[EN] In this paper, we propose a general bi-parametric family of sixth order iterative methods to solve systems of nonlinear equations. The presented scheme contains some well known existing methods as special cases. The ...
Moscoso Martínez, Marlon Ernesto(Universitat Politècnica de València, 2020-09-02)
[ES] En el presente trabajo se estudia la dinámica compleja de una familia de métodos con esquemas iterativos multipaso, que es una generalización de un método propuesto por Artidiello y col., sobre polinomios cuadráticos. ...
Magreñán Ruiz, Ángel Alberto; Cordero Barbero, Alicia; Gutiérrez Jiménez, José Manuel; Torregrosa Sánchez, Juan Ramón(Elsevier, 2014-11)
The real dynamics of a family of fourth-order iterative methods is studied when it is applied on quadratic polynomials. A Scaling Theorem is obtained and the conjugacy classes are analyzed. The convergence plane is used ...
Cordero Barbero, Alicia; Gutiérrez, José Manuel; Magreñán, A. Alberto; Torregrosa Sánchez, Juan Ramón(Elsevier, 2016-07-20)
A one-parametric family of fourth-order iterative methods for solving nonlinear systems is presented, proving the fourth-order of convergence of all members in this family, except one of them whose order is five. The methods ...