- -

Zooming into primary breakup mechanisms of high-pressure automotive sprays

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Zooming into primary breakup mechanisms of high-pressure automotive sprays

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kirsch, Valeri es_ES
dc.contributor.author Reddemann, Manuel es_ES
dc.contributor.author Palmer, Johannes es_ES
dc.contributor.author Kneer, Reinhold es_ES
dc.date.accessioned 2018-04-11T09:22:24Z
dc.date.available 2018-04-11T09:22:24Z
dc.date.issued 2017-07-28
dc.identifier.isbn 9788490485804
dc.identifier.uri http://hdl.handle.net/10251/100172
dc.description.abstract [EN] In-cylinder mixture formation and combustion are highly influenced by primary breakup of injected fuel. Experimentalinvestigation of this phenomenon directly at the outlet of a diesel injector requires a specialized transmitted light microscopy technique combined with a constant-pressure flow microscopy vessel. The method allows verification of the existence of an intact jet core for various states of injection and different fuels. The jet core is dominated by axisymmetric surface waves during the initial injection phase. By quantification of the wavelengths and comparison with existing breakup theories, boundary layer instabilities are identified as origin of surface waves. Boundary layer wavelengths are found to be larger for a higher fuel viscosity. An occasionally appearing non-cylindrical helical jet shape is visible during the injector’s opening and closing phase. The helical jet shape is directly resulting from the nozzle outlet flow. Inner nozzle effects are found to be responsible for generation of the helical structure. A fuel dependence of the helical structure formation and its breakup could not be proved. Results also prove that fuel is exiting the nozzle even after the injector needle is closed, while air is simultaneously moving into the nozzle orifice. es_ES
dc.description.sponsorship This work was performed as part of the Cluster of Excellence “Tailor-Made Fuels from Biomass”, which was funded by the Excellence Initiative of the German federal and state governments to promote science and research at German universities. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Automotive spray es_ES
dc.subject Primary breakup es_ES
dc.subject Microscopy es_ES
dc.subject Boundary layer instability es_ES
dc.title Zooming into primary breakup mechanisms of high-pressure automotive sprays es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/ILASS2017.2017.4603
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Kirsch, V.; Reddemann, M.; Palmer, J.; Kneer, R. (2017). Zooming into primary breakup mechanisms of high-pressure automotive sprays. En Ilass Europe. 28th european conference on Liquid Atomization and Spray Systems. Editorial Universitat Politècnica de València. 224-231. https://doi.org/10.4995/ILASS2017.2017.4603 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename ILASS2017 - 28th European Conference on Liquid Atomization and Spray Systems es_ES
dc.relation.conferencedate September 06-08,2017 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/ILASS/ILASS2017/paper/view/4603 es_ES
dc.description.upvformatpinicio 224 es_ES
dc.description.upvformatpfin 231 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\4603 es_ES
dc.contributor.funder Wissenschaftsrat, Alemania


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem