- -

Effect of Ag nanoparticles integrated within antireflection coatings for solar cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Ag nanoparticles integrated within antireflection coatings for solar cells

Mostrar el registro completo del ítem

Cortés-Juan, F.; Chaverri Ramos, C.; Connolly, JP.; David, C.; García De Abajo, FJ.; Hurtado Montañés, J.; Mihailetchi, V.... (2013). Effect of Ag nanoparticles integrated within antireflection coatings for solar cells. Journal of Renewable and Sustainable Energy. 5(3):33116-1-33116-13. https://doi.org/10.1063/1.4808259

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/100338

Ficheros en el ítem

Metadatos del ítem

Título: Effect of Ag nanoparticles integrated within antireflection coatings for solar cells
Autor: Cortés-Juan, F. Chaverri Ramos, Christian Connolly, James Patrick David, Christin García de Abajo, Francisco Javier Hurtado Montañés, Juan Mihailetchi, V.D. Ponce-Alcántara, Salvador Sánchez Plaza, Guillermo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] The influence of the relative position of Ag metallic nanoparticles (Ag MNPs) embedded in a 100 nm SiOx Antireflection Coating (ARC) for specular polished c-Si substrates is studied. It is demonstrated that this ...[+]
Palabras clave: Antireflection coatings , Contamination , Nanoparticles , Silver , Solar cells
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Renewable and Sustainable Energy. (eissn: 1941-7012 )
DOI: 10.1063/1.4808259
Editorial:
American Institute of Physics
Versión del editor: http://doi.org/10.1063/1.4808259
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/248909/EU/Improve Photovoltaic efficiency by applying novel effects at the limits of light to matter interaction/
info:eu-repo/grantAgreement/MICINN//TEC2009-07753-E/ES/PREPARACION DE LA PROPUESTA DEL PROYECTO EUROPEO LIMA, STREP DEL VII PROGRAMA MARCO DE LA U.E./
Agradecimientos:
The authors would like to thank the European Union framework 7th program for making this work possible via the LIMA project as well as to the following fellowships: The R&D FPI-UPV (P.A.I.D. program of the Universitat ...[+]
Tipo: Artículo

References

Polman, A., & Atwater, H. A. (2012). Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 11(3), 174-177. doi:10.1038/nmat3263

Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9(3), 205-213. doi:10.1038/nmat2629

Polman, A. (2008). APPLIED PHYSICS: Plasmonics Applied. Science, 322(5903), 868-869. doi:10.1126/science.1163959 [+]
Polman, A., & Atwater, H. A. (2012). Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 11(3), 174-177. doi:10.1038/nmat3263

Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9(3), 205-213. doi:10.1038/nmat2629

Polman, A. (2008). APPLIED PHYSICS: Plasmonics Applied. Science, 322(5903), 868-869. doi:10.1126/science.1163959

Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937

Ozbay, E. (2006). Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science, 311(5758), 189-193. doi:10.1126/science.1114849

Catchpole, K. R., & Polman, A. (2008). Plasmonic solar cells. Optics Express, 16(26), 21793. doi:10.1364/oe.16.021793

Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Verhagen, E., Walters, R. J., Schropp, R. E. I., … Polman, A. (2010). Light trapping in ultrathin plasmonic solar cells. Optics Express, 18(S2), A237. doi:10.1364/oe.18.00a237

Pala, R. A., White, J., Barnard, E., Liu, J., & Brongersma, M. L. (2009). Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements. Advanced Materials, 21(34), 3504-3509. doi:10.1002/adma.200900331

Aydin, K., Ferry, V. E., Briggs, R. M., & Atwater, H. A. (2011). Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2(1). doi:10.1038/ncomms1528

Grandidier, J., Callahan, D. M., Munday, J. N., & Atwater, H. A. (2011). Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres. Advanced Materials, 23(10), 1272-1276. doi:10.1002/adma.201004393

Yoo, W. J., YANG, C., ZHANG, G., LI, H. M., PARK, Y. J., & KIM, J. M. (2010). Localized Surface Plasmon Resonances by Ag Nanoparticles on SiN for Solar Cell Application. Journal of the Korean Physical Society, 56(5), 1488-1491. doi:10.3938/jkps.56.1488

Hong, Y.-K., Kim, H., Lee, G., Kim, W., Park, J.-I., Cheon, J., & Koo, J.-Y. (2002). Controlled two-dimensional distribution of nanoparticles by spin-coating method. Applied Physics Letters, 80(5), 844-846. doi:10.1063/1.1445811

Nayfeh, O. M., Antoniadis, D. A., Mantey, K., & Nayfeh, M. H. (2009). Uniform delivery of silicon nanoparticles on device quality substrates using spin coating from isopropyl alcohol colloids. Applied Physics Letters, 94(4), 043112. doi:10.1063/1.3075845

Munday, J. N., & Atwater, H. A. (2011). Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings. Nano Letters, 11(6), 2195-2201. doi:10.1021/nl101875t

Krogman, K. C., Druffel, T., & Sunkara, M. K. (2005). Anti-reflective optical coatings incorporating nanoparticles. Nanotechnology, 16(7), S338-S343. doi:10.1088/0957-4484/16/7/005

Mcmahon, M. D., Lopez, R., Meyer, H. M., Feldman, L. C., & Haglund, R. F. (2005). Rapid tarnishing of silver nanoparticles in ambient laboratory air. Applied Physics B, 80(7), 915-921. doi:10.1007/s00340-005-1793-6

Giannini, V., Francescato, Y., Amrania, H., Phillips, C. C., & Maier, S. A. (2011). Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach. Nano Letters, 11(7), 2835-2840. doi:10.1021/nl201207n

Grigorescu, A. E., van der Krogt, M. C., Hagen, C. W., & Kruit, P. (2007). 10nm lines and spaces written in HSQ, using electron beam lithography. Microelectronic Engineering, 84(5-8), 822-824. doi:10.1016/j.mee.2007.01.022

Fano, U. (1961). Effects of Configuration Interaction on Intensities and Phase Shifts. Physical Review, 124(6), 1866-1878. doi:10.1103/physrev.124.1866

Beck, F. J., Polman, A., & Catchpole, K. R. (2009). Tunable light trapping for solar cells using localized surface plasmons. Journal of Applied Physics, 105(11), 114310. doi:10.1063/1.3140609

Callahan, D. M., Munday, J. N., & Atwater, H. A. (2012). Solar Cell Light Trapping beyond the Ray Optic Limit. Nano Letters, 12(1), 214-218. doi:10.1021/nl203351k

Häffner, M., Haug, A., Heeren, A., Fleischer, M., Peisert, H., Chassé, T., & Kern, D. P. (2007). Influence of temperature on HSQ electron-beam lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25(6), 2045. doi:10.1116/1.2794324

Vázquez, M. A., Connolly, J. P., Cubero, O., Daly, G., Halm, A., Kopecek, R., … Pavesi, L. (2011). Cost model for LIMA device. Energy Procedia, 8, 443-448. doi:10.1016/j.egypro.2011.06.163

García de Abajo, F. J. (1999). Multiple scattering of radiation in clusters of dielectrics. Physical Review B, 60(8), 6086-6102. doi:10.1103/physrevb.60.6086

MacLeod, H. A., & Macleod, H. A. (2010). Thin-Film Optical Filters. doi:10.1201/9781420073034

Pillai, S., Beck, F. J., Catchpole, K. R., Ouyang, Z., & Green, M. A. (2011). The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. Journal of Applied Physics, 109(7), 073105. doi:10.1063/1.3567299

Xu, R., Wang, X., Liu, W., Song, L., Xu, X., Ji, A., … Li, J. (2012). Optimization of the Dielectric Layer Thickness for Surface-Plasmon-Induced Light Absorption for Silicon Solar Cells. Japanese Journal of Applied Physics, 51, 042301. doi:10.1143/jjap.51.042301

Xu, R., Wang, X., Song, L., Liu, W., Ji, A., Yang, F., & Li, J. (2012). Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Optics Express, 20(5), 5061. doi:10.1364/oe.20.005061

Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Schropp, R. E. I., Atwater, H. A., & Polman, A. (2009). Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Applied Physics Letters, 95(18), 183503. doi:10.1063/1.3256187

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem