Polman, A., & Atwater, H. A. (2012). Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 11(3), 174-177. doi:10.1038/nmat3263
Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9(3), 205-213. doi:10.1038/nmat2629
Polman, A. (2008). APPLIED PHYSICS: Plasmonics Applied. Science, 322(5903), 868-869. doi:10.1126/science.1163959
[+]
Polman, A., & Atwater, H. A. (2012). Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 11(3), 174-177. doi:10.1038/nmat3263
Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9(3), 205-213. doi:10.1038/nmat2629
Polman, A. (2008). APPLIED PHYSICS: Plasmonics Applied. Science, 322(5903), 868-869. doi:10.1126/science.1163959
Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937
Ozbay, E. (2006). Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science, 311(5758), 189-193. doi:10.1126/science.1114849
Catchpole, K. R., & Polman, A. (2008). Plasmonic solar cells. Optics Express, 16(26), 21793. doi:10.1364/oe.16.021793
Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Verhagen, E., Walters, R. J., Schropp, R. E. I., … Polman, A. (2010). Light trapping in ultrathin plasmonic solar cells. Optics Express, 18(S2), A237. doi:10.1364/oe.18.00a237
Pala, R. A., White, J., Barnard, E., Liu, J., & Brongersma, M. L. (2009). Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements. Advanced Materials, 21(34), 3504-3509. doi:10.1002/adma.200900331
Aydin, K., Ferry, V. E., Briggs, R. M., & Atwater, H. A. (2011). Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2(1). doi:10.1038/ncomms1528
Grandidier, J., Callahan, D. M., Munday, J. N., & Atwater, H. A. (2011). Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres. Advanced Materials, 23(10), 1272-1276. doi:10.1002/adma.201004393
Yoo, W. J., YANG, C., ZHANG, G., LI, H. M., PARK, Y. J., & KIM, J. M. (2010). Localized Surface Plasmon Resonances by Ag Nanoparticles on SiN for Solar Cell Application. Journal of the Korean Physical Society, 56(5), 1488-1491. doi:10.3938/jkps.56.1488
Hong, Y.-K., Kim, H., Lee, G., Kim, W., Park, J.-I., Cheon, J., & Koo, J.-Y. (2002). Controlled two-dimensional distribution of nanoparticles by spin-coating method. Applied Physics Letters, 80(5), 844-846. doi:10.1063/1.1445811
Nayfeh, O. M., Antoniadis, D. A., Mantey, K., & Nayfeh, M. H. (2009). Uniform delivery of silicon nanoparticles on device quality substrates using spin coating from isopropyl alcohol colloids. Applied Physics Letters, 94(4), 043112. doi:10.1063/1.3075845
Munday, J. N., & Atwater, H. A. (2011). Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings. Nano Letters, 11(6), 2195-2201. doi:10.1021/nl101875t
Krogman, K. C., Druffel, T., & Sunkara, M. K. (2005). Anti-reflective optical coatings incorporating nanoparticles. Nanotechnology, 16(7), S338-S343. doi:10.1088/0957-4484/16/7/005
Mcmahon, M. D., Lopez, R., Meyer, H. M., Feldman, L. C., & Haglund, R. F. (2005). Rapid tarnishing of silver nanoparticles in ambient laboratory air. Applied Physics B, 80(7), 915-921. doi:10.1007/s00340-005-1793-6
Giannini, V., Francescato, Y., Amrania, H., Phillips, C. C., & Maier, S. A. (2011). Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach. Nano Letters, 11(7), 2835-2840. doi:10.1021/nl201207n
Grigorescu, A. E., van der Krogt, M. C., Hagen, C. W., & Kruit, P. (2007). 10nm lines and spaces written in HSQ, using electron beam lithography. Microelectronic Engineering, 84(5-8), 822-824. doi:10.1016/j.mee.2007.01.022
Fano, U. (1961). Effects of Configuration Interaction on Intensities and Phase Shifts. Physical Review, 124(6), 1866-1878. doi:10.1103/physrev.124.1866
Beck, F. J., Polman, A., & Catchpole, K. R. (2009). Tunable light trapping for solar cells using localized surface plasmons. Journal of Applied Physics, 105(11), 114310. doi:10.1063/1.3140609
Callahan, D. M., Munday, J. N., & Atwater, H. A. (2012). Solar Cell Light Trapping beyond the Ray Optic Limit. Nano Letters, 12(1), 214-218. doi:10.1021/nl203351k
Häffner, M., Haug, A., Heeren, A., Fleischer, M., Peisert, H., Chassé, T., & Kern, D. P. (2007). Influence of temperature on HSQ electron-beam lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25(6), 2045. doi:10.1116/1.2794324
Vázquez, M. A., Connolly, J. P., Cubero, O., Daly, G., Halm, A., Kopecek, R., … Pavesi, L. (2011). Cost model for LIMA device. Energy Procedia, 8, 443-448. doi:10.1016/j.egypro.2011.06.163
García de Abajo, F. J. (1999). Multiple scattering of radiation in clusters of dielectrics. Physical Review B, 60(8), 6086-6102. doi:10.1103/physrevb.60.6086
MacLeod, H. A., & Macleod, H. A. (2010). Thin-Film Optical Filters. doi:10.1201/9781420073034
Pillai, S., Beck, F. J., Catchpole, K. R., Ouyang, Z., & Green, M. A. (2011). The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. Journal of Applied Physics, 109(7), 073105. doi:10.1063/1.3567299
Xu, R., Wang, X., Liu, W., Song, L., Xu, X., Ji, A., … Li, J. (2012). Optimization of the Dielectric Layer Thickness for Surface-Plasmon-Induced Light Absorption for Silicon Solar Cells. Japanese Journal of Applied Physics, 51, 042301. doi:10.1143/jjap.51.042301
Xu, R., Wang, X., Song, L., Liu, W., Ji, A., Yang, F., & Li, J. (2012). Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Optics Express, 20(5), 5061. doi:10.1364/oe.20.005061
Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Schropp, R. E. I., Atwater, H. A., & Polman, A. (2009). Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Applied Physics Letters, 95(18), 183503. doi:10.1063/1.3256187
[-]