- -

Effect of Ag nanoparticles integrated within antireflection coatings for solar cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effect of Ag nanoparticles integrated within antireflection coatings for solar cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cortés-Juan, F. es_ES
dc.contributor.author Chaverri Ramos, Christian es_ES
dc.contributor.author Connolly, James Patrick es_ES
dc.contributor.author David, Christin es_ES
dc.contributor.author García de Abajo, Francisco Javier es_ES
dc.contributor.author Hurtado Montañés, Juan es_ES
dc.contributor.author Mihailetchi, V.D. es_ES
dc.contributor.author Ponce-Alcántara, Salvador es_ES
dc.contributor.author Sánchez Plaza, Guillermo es_ES
dc.date.accessioned 2018-04-13T04:16:48Z
dc.date.available 2018-04-13T04:16:48Z
dc.date.issued 2013 es_ES
dc.identifier.uri http://hdl.handle.net/10251/100338
dc.description.abstract [EN] The influence of the relative position of Ag metallic nanoparticles (Ag MNPs) embedded in a 100 nm SiOx Antireflection Coating (ARC) for specular polished c-Si substrates is studied. It is demonstrated that this Plasmonic ARC (PARC) can achieve lower average reflectivities than the optimised SiOx ARC. This has been done for different sizes of Ag nanoparticles. An alternative for PECVD to encapsulate Ag MNPs with SiOx is presented, avoiding the risk of metallic contamination in the reactor chamber as well as its effect on the size and shape of the self-aggregated Ag MNP. It is demonstrated, however, that this PARC is not suitable for silicon solar cells as a substitute for traditional ARC because it presents a high loss related with Fano destructive interference. es_ES
dc.description.sponsorship The authors would like to thank the European Union framework 7th program for making this work possible via the LIMA project as well as to the following fellowships: The R&D FPI-UPV (P.A.I.D. program of the Universitat Politecnica de Valencia) and the FPU by the Spanish Ministerio de Educacion, Cultura y Deporte.
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof Journal of Renewable and Sustainable Energy es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Antireflection coatings es_ES
dc.subject Contamination es_ES
dc.subject Nanoparticles es_ES
dc.subject Silver es_ES
dc.subject Solar cells es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Effect of Ag nanoparticles integrated within antireflection coatings for solar cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4808259 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/248909/EU/Improve Photovoltaic efficiency by applying novel effects at the limits of light to matter interaction/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2009-07753-E/ES/PREPARACION DE LA PROPUESTA DEL PROYECTO EUROPEO LIMA, STREP DEL VII PROGRAMA MARCO DE LA U.E./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Cortés-Juan, F.; Chaverri Ramos, C.; Connolly, JP.; David, C.; García De Abajo, FJ.; Hurtado Montañés, J.; Mihailetchi, V.... (2013). Effect of Ag nanoparticles integrated within antireflection coatings for solar cells. Journal of Renewable and Sustainable Energy. 5(3):33116-1-33116-13. https://doi.org/10.1063/1.4808259 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1063/1.4808259 es_ES
dc.description.upvformatpinicio 33116-1 es_ES
dc.description.upvformatpfin 33116-13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1941-7012 es_ES
dc.relation.pasarela S\245773 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Commission
dc.contributor.funder Universitat Politècnica de València
dc.description.references Polman, A., & Atwater, H. A. (2012). Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 11(3), 174-177. doi:10.1038/nmat3263 es_ES
dc.description.references Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9(3), 205-213. doi:10.1038/nmat2629 es_ES
dc.description.references Polman, A. (2008). APPLIED PHYSICS: Plasmonics Applied. Science, 322(5903), 868-869. doi:10.1126/science.1163959 es_ES
dc.description.references Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937 es_ES
dc.description.references Ozbay, E. (2006). Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science, 311(5758), 189-193. doi:10.1126/science.1114849 es_ES
dc.description.references Catchpole, K. R., & Polman, A. (2008). Plasmonic solar cells. Optics Express, 16(26), 21793. doi:10.1364/oe.16.021793 es_ES
dc.description.references Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Verhagen, E., Walters, R. J., Schropp, R. E. I., … Polman, A. (2010). Light trapping in ultrathin plasmonic solar cells. Optics Express, 18(S2), A237. doi:10.1364/oe.18.00a237 es_ES
dc.description.references Pala, R. A., White, J., Barnard, E., Liu, J., & Brongersma, M. L. (2009). Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements. Advanced Materials, 21(34), 3504-3509. doi:10.1002/adma.200900331 es_ES
dc.description.references Aydin, K., Ferry, V. E., Briggs, R. M., & Atwater, H. A. (2011). Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2(1). doi:10.1038/ncomms1528 es_ES
dc.description.references Grandidier, J., Callahan, D. M., Munday, J. N., & Atwater, H. A. (2011). Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres. Advanced Materials, 23(10), 1272-1276. doi:10.1002/adma.201004393 es_ES
dc.description.references Yoo, W. J., YANG, C., ZHANG, G., LI, H. M., PARK, Y. J., & KIM, J. M. (2010). Localized Surface Plasmon Resonances by Ag Nanoparticles on SiN for Solar Cell Application. Journal of the Korean Physical Society, 56(5), 1488-1491. doi:10.3938/jkps.56.1488 es_ES
dc.description.references Hong, Y.-K., Kim, H., Lee, G., Kim, W., Park, J.-I., Cheon, J., & Koo, J.-Y. (2002). Controlled two-dimensional distribution of nanoparticles by spin-coating method. Applied Physics Letters, 80(5), 844-846. doi:10.1063/1.1445811 es_ES
dc.description.references Nayfeh, O. M., Antoniadis, D. A., Mantey, K., & Nayfeh, M. H. (2009). Uniform delivery of silicon nanoparticles on device quality substrates using spin coating from isopropyl alcohol colloids. Applied Physics Letters, 94(4), 043112. doi:10.1063/1.3075845 es_ES
dc.description.references Munday, J. N., & Atwater, H. A. (2011). Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings. Nano Letters, 11(6), 2195-2201. doi:10.1021/nl101875t es_ES
dc.description.references Krogman, K. C., Druffel, T., & Sunkara, M. K. (2005). Anti-reflective optical coatings incorporating nanoparticles. Nanotechnology, 16(7), S338-S343. doi:10.1088/0957-4484/16/7/005 es_ES
dc.description.references Mcmahon, M. D., Lopez, R., Meyer, H. M., Feldman, L. C., & Haglund, R. F. (2005). Rapid tarnishing of silver nanoparticles in ambient laboratory air. Applied Physics B, 80(7), 915-921. doi:10.1007/s00340-005-1793-6 es_ES
dc.description.references Giannini, V., Francescato, Y., Amrania, H., Phillips, C. C., & Maier, S. A. (2011). Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach. Nano Letters, 11(7), 2835-2840. doi:10.1021/nl201207n es_ES
dc.description.references Grigorescu, A. E., van der Krogt, M. C., Hagen, C. W., & Kruit, P. (2007). 10nm lines and spaces written in HSQ, using electron beam lithography. Microelectronic Engineering, 84(5-8), 822-824. doi:10.1016/j.mee.2007.01.022 es_ES
dc.description.references Fano, U. (1961). Effects of Configuration Interaction on Intensities and Phase Shifts. Physical Review, 124(6), 1866-1878. doi:10.1103/physrev.124.1866 es_ES
dc.description.references Beck, F. J., Polman, A., & Catchpole, K. R. (2009). Tunable light trapping for solar cells using localized surface plasmons. Journal of Applied Physics, 105(11), 114310. doi:10.1063/1.3140609 es_ES
dc.description.references Callahan, D. M., Munday, J. N., & Atwater, H. A. (2012). Solar Cell Light Trapping beyond the Ray Optic Limit. Nano Letters, 12(1), 214-218. doi:10.1021/nl203351k es_ES
dc.description.references Häffner, M., Haug, A., Heeren, A., Fleischer, M., Peisert, H., Chassé, T., & Kern, D. P. (2007). Influence of temperature on HSQ electron-beam lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25(6), 2045. doi:10.1116/1.2794324 es_ES
dc.description.references Vázquez, M. A., Connolly, J. P., Cubero, O., Daly, G., Halm, A., Kopecek, R., … Pavesi, L. (2011). Cost model for LIMA device. Energy Procedia, 8, 443-448. doi:10.1016/j.egypro.2011.06.163 es_ES
dc.description.references García de Abajo, F. J. (1999). Multiple scattering of radiation in clusters of dielectrics. Physical Review B, 60(8), 6086-6102. doi:10.1103/physrevb.60.6086 es_ES
dc.description.references MacLeod, H. A., & Macleod, H. A. (2010). Thin-Film Optical Filters. doi:10.1201/9781420073034 es_ES
dc.description.references Pillai, S., Beck, F. J., Catchpole, K. R., Ouyang, Z., & Green, M. A. (2011). The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. Journal of Applied Physics, 109(7), 073105. doi:10.1063/1.3567299 es_ES
dc.description.references Xu, R., Wang, X., Liu, W., Song, L., Xu, X., Ji, A., … Li, J. (2012). Optimization of the Dielectric Layer Thickness for Surface-Plasmon-Induced Light Absorption for Silicon Solar Cells. Japanese Journal of Applied Physics, 51, 042301. doi:10.1143/jjap.51.042301 es_ES
dc.description.references Xu, R., Wang, X., Song, L., Liu, W., Ji, A., Yang, F., & Li, J. (2012). Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Optics Express, 20(5), 5061. doi:10.1364/oe.20.005061 es_ES
dc.description.references Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Schropp, R. E. I., Atwater, H. A., & Polman, A. (2009). Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Applied Physics Letters, 95(18), 183503. doi:10.1063/1.3256187 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem