Mostrar el registro sencillo del ítem
dc.contributor.author | Cortés-Juan, F. | es_ES |
dc.contributor.author | Chaverri Ramos, Christian | es_ES |
dc.contributor.author | Connolly, James Patrick | es_ES |
dc.contributor.author | David, Christin | es_ES |
dc.contributor.author | García de Abajo, Francisco Javier | es_ES |
dc.contributor.author | Hurtado Montañés, Juan | es_ES |
dc.contributor.author | Mihailetchi, V.D. | es_ES |
dc.contributor.author | Ponce-Alcántara, Salvador | es_ES |
dc.contributor.author | Sánchez Plaza, Guillermo | es_ES |
dc.date.accessioned | 2018-04-13T04:16:48Z | |
dc.date.available | 2018-04-13T04:16:48Z | |
dc.date.issued | 2013 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/100338 | |
dc.description.abstract | [EN] The influence of the relative position of Ag metallic nanoparticles (Ag MNPs) embedded in a 100 nm SiOx Antireflection Coating (ARC) for specular polished c-Si substrates is studied. It is demonstrated that this Plasmonic ARC (PARC) can achieve lower average reflectivities than the optimised SiOx ARC. This has been done for different sizes of Ag nanoparticles. An alternative for PECVD to encapsulate Ag MNPs with SiOx is presented, avoiding the risk of metallic contamination in the reactor chamber as well as its effect on the size and shape of the self-aggregated Ag MNP. It is demonstrated, however, that this PARC is not suitable for silicon solar cells as a substitute for traditional ARC because it presents a high loss related with Fano destructive interference. | es_ES |
dc.description.sponsorship | The authors would like to thank the European Union framework 7th program for making this work possible via the LIMA project as well as to the following fellowships: The R&D FPI-UPV (P.A.I.D. program of the Universitat Politecnica de Valencia) and the FPU by the Spanish Ministerio de Educacion, Cultura y Deporte. | |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics | es_ES |
dc.relation.ispartof | Journal of Renewable and Sustainable Energy | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Antireflection coatings | es_ES |
dc.subject | Contamination | es_ES |
dc.subject | Nanoparticles | es_ES |
dc.subject | Silver | es_ES |
dc.subject | Solar cells | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Effect of Ag nanoparticles integrated within antireflection coatings for solar cells | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.4808259 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/248909/EU/Improve Photovoltaic efficiency by applying novel effects at the limits of light to matter interaction/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//TEC2009-07753-E/ES/PREPARACION DE LA PROPUESTA DEL PROYECTO EUROPEO LIMA, STREP DEL VII PROGRAMA MARCO DE LA U.E./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Cortés-Juan, F.; Chaverri Ramos, C.; Connolly, JP.; David, C.; García De Abajo, FJ.; Hurtado Montañés, J.; Mihailetchi, V.... (2013). Effect of Ag nanoparticles integrated within antireflection coatings for solar cells. Journal of Renewable and Sustainable Energy. 5(3):33116-1-33116-13. https://doi.org/10.1063/1.4808259 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1063/1.4808259 | es_ES |
dc.description.upvformatpinicio | 33116-1 | es_ES |
dc.description.upvformatpfin | 33116-13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1941-7012 | es_ES |
dc.relation.pasarela | S\245773 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | Polman, A., & Atwater, H. A. (2012). Photonic design principles for ultrahigh-efficiency photovoltaics. Nature Materials, 11(3), 174-177. doi:10.1038/nmat3263 | es_ES |
dc.description.references | Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9(3), 205-213. doi:10.1038/nmat2629 | es_ES |
dc.description.references | Polman, A. (2008). APPLIED PHYSICS: Plasmonics Applied. Science, 322(5903), 868-869. doi:10.1126/science.1163959 | es_ES |
dc.description.references | Barnes, W. L., Dereux, A., & Ebbesen, T. W. (2003). Surface plasmon subwavelength optics. Nature, 424(6950), 824-830. doi:10.1038/nature01937 | es_ES |
dc.description.references | Ozbay, E. (2006). Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science, 311(5758), 189-193. doi:10.1126/science.1114849 | es_ES |
dc.description.references | Catchpole, K. R., & Polman, A. (2008). Plasmonic solar cells. Optics Express, 16(26), 21793. doi:10.1364/oe.16.021793 | es_ES |
dc.description.references | Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Verhagen, E., Walters, R. J., Schropp, R. E. I., … Polman, A. (2010). Light trapping in ultrathin plasmonic solar cells. Optics Express, 18(S2), A237. doi:10.1364/oe.18.00a237 | es_ES |
dc.description.references | Pala, R. A., White, J., Barnard, E., Liu, J., & Brongersma, M. L. (2009). Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements. Advanced Materials, 21(34), 3504-3509. doi:10.1002/adma.200900331 | es_ES |
dc.description.references | Aydin, K., Ferry, V. E., Briggs, R. M., & Atwater, H. A. (2011). Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2(1). doi:10.1038/ncomms1528 | es_ES |
dc.description.references | Grandidier, J., Callahan, D. M., Munday, J. N., & Atwater, H. A. (2011). Light Absorption Enhancement in Thin-Film Solar Cells Using Whispering Gallery Modes in Dielectric Nanospheres. Advanced Materials, 23(10), 1272-1276. doi:10.1002/adma.201004393 | es_ES |
dc.description.references | Yoo, W. J., YANG, C., ZHANG, G., LI, H. M., PARK, Y. J., & KIM, J. M. (2010). Localized Surface Plasmon Resonances by Ag Nanoparticles on SiN for Solar Cell Application. Journal of the Korean Physical Society, 56(5), 1488-1491. doi:10.3938/jkps.56.1488 | es_ES |
dc.description.references | Hong, Y.-K., Kim, H., Lee, G., Kim, W., Park, J.-I., Cheon, J., & Koo, J.-Y. (2002). Controlled two-dimensional distribution of nanoparticles by spin-coating method. Applied Physics Letters, 80(5), 844-846. doi:10.1063/1.1445811 | es_ES |
dc.description.references | Nayfeh, O. M., Antoniadis, D. A., Mantey, K., & Nayfeh, M. H. (2009). Uniform delivery of silicon nanoparticles on device quality substrates using spin coating from isopropyl alcohol colloids. Applied Physics Letters, 94(4), 043112. doi:10.1063/1.3075845 | es_ES |
dc.description.references | Munday, J. N., & Atwater, H. A. (2011). Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings. Nano Letters, 11(6), 2195-2201. doi:10.1021/nl101875t | es_ES |
dc.description.references | Krogman, K. C., Druffel, T., & Sunkara, M. K. (2005). Anti-reflective optical coatings incorporating nanoparticles. Nanotechnology, 16(7), S338-S343. doi:10.1088/0957-4484/16/7/005 | es_ES |
dc.description.references | Mcmahon, M. D., Lopez, R., Meyer, H. M., Feldman, L. C., & Haglund, R. F. (2005). Rapid tarnishing of silver nanoparticles in ambient laboratory air. Applied Physics B, 80(7), 915-921. doi:10.1007/s00340-005-1793-6 | es_ES |
dc.description.references | Giannini, V., Francescato, Y., Amrania, H., Phillips, C. C., & Maier, S. A. (2011). Fano Resonances in Nanoscale Plasmonic Systems: A Parameter-Free Modeling Approach. Nano Letters, 11(7), 2835-2840. doi:10.1021/nl201207n | es_ES |
dc.description.references | Grigorescu, A. E., van der Krogt, M. C., Hagen, C. W., & Kruit, P. (2007). 10nm lines and spaces written in HSQ, using electron beam lithography. Microelectronic Engineering, 84(5-8), 822-824. doi:10.1016/j.mee.2007.01.022 | es_ES |
dc.description.references | Fano, U. (1961). Effects of Configuration Interaction on Intensities and Phase Shifts. Physical Review, 124(6), 1866-1878. doi:10.1103/physrev.124.1866 | es_ES |
dc.description.references | Beck, F. J., Polman, A., & Catchpole, K. R. (2009). Tunable light trapping for solar cells using localized surface plasmons. Journal of Applied Physics, 105(11), 114310. doi:10.1063/1.3140609 | es_ES |
dc.description.references | Callahan, D. M., Munday, J. N., & Atwater, H. A. (2012). Solar Cell Light Trapping beyond the Ray Optic Limit. Nano Letters, 12(1), 214-218. doi:10.1021/nl203351k | es_ES |
dc.description.references | Häffner, M., Haug, A., Heeren, A., Fleischer, M., Peisert, H., Chassé, T., & Kern, D. P. (2007). Influence of temperature on HSQ electron-beam lithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25(6), 2045. doi:10.1116/1.2794324 | es_ES |
dc.description.references | Vázquez, M. A., Connolly, J. P., Cubero, O., Daly, G., Halm, A., Kopecek, R., … Pavesi, L. (2011). Cost model for LIMA device. Energy Procedia, 8, 443-448. doi:10.1016/j.egypro.2011.06.163 | es_ES |
dc.description.references | García de Abajo, F. J. (1999). Multiple scattering of radiation in clusters of dielectrics. Physical Review B, 60(8), 6086-6102. doi:10.1103/physrevb.60.6086 | es_ES |
dc.description.references | MacLeod, H. A., & Macleod, H. A. (2010). Thin-Film Optical Filters. doi:10.1201/9781420073034 | es_ES |
dc.description.references | Pillai, S., Beck, F. J., Catchpole, K. R., Ouyang, Z., & Green, M. A. (2011). The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions. Journal of Applied Physics, 109(7), 073105. doi:10.1063/1.3567299 | es_ES |
dc.description.references | Xu, R., Wang, X., Liu, W., Song, L., Xu, X., Ji, A., … Li, J. (2012). Optimization of the Dielectric Layer Thickness for Surface-Plasmon-Induced Light Absorption for Silicon Solar Cells. Japanese Journal of Applied Physics, 51, 042301. doi:10.1143/jjap.51.042301 | es_ES |
dc.description.references | Xu, R., Wang, X., Song, L., Liu, W., Ji, A., Yang, F., & Li, J. (2012). Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells. Optics Express, 20(5), 5061. doi:10.1364/oe.20.005061 | es_ES |
dc.description.references | Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Schropp, R. E. I., Atwater, H. A., & Polman, A. (2009). Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors. Applied Physics Letters, 95(18), 183503. doi:10.1063/1.3256187 | es_ES |