- -

Grapefruit Seed Extract and Lemon Essential Oil as Active Agents in Corn Starch-Chitosan Blend Films

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Grapefruit Seed Extract and Lemon Essential Oil as Active Agents in Corn Starch-Chitosan Blend Films

Mostrar el registro completo del ítem

Bof, M.; Jiménez, A.; Locaso, D.; García, M.; Chiralt, A. (2016). Grapefruit Seed Extract and Lemon Essential Oil as Active Agents in Corn Starch-Chitosan Blend Films. Food and Bioprocess Technology. 9(12):2033-2045. doi:10.1007/s11947-016-1789-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/100789

Ficheros en el ítem

Metadatos del ítem

Título: Grapefruit Seed Extract and Lemon Essential Oil as Active Agents in Corn Starch-Chitosan Blend Films
Autor: Bof, M.J. Jiménez, A. Locaso, D.E. García, M.A. Chiralt, A.
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] The effect of lemon essential oil (LEO) and grapefruit seed extract (GSE) addition to starch-chitosan blend films on their functional properties and the associated structural changes were studied. Likewise, the films' ...[+]
Palabras clave: Starch-chitosan films , Lemon essential oil , Grapefruit seeds extract antimicrobials , Tensile and barrier properties
Derechos de uso: Cerrado
Fuente:
Food and Bioprocess Technology. (issn: 1935-5130 )
DOI: 10.1007/s11947-016-1789-8
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s11947-016-1789-8
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2013-42989-R/ES/NUEVOS MATERIALES BIODEGRADABLES MULTICAPA PARA ENVASADO ACTIVO DE ALIMENTOS SENSIBLES AL DETERIORO MICROBIANO Y%2FO OXIDATIVO/
Agradecimientos:
The present work was financially supported by CONICET Argentina, UNLP, and ANPCyT (Project PICT 2011-1213).
This work was financially supported by the Project PICT 2011-1213 (ANPCyT, Argentina) and Project AGL2013-42989-R (Ministerio de Economía y Competitividad, España). M. J. Bof acknowledges to the Argentinean Scholarship ...[+]
Tipo: Artículo

References

AL-Jabri, N. N., & Hossain, M. A. (2014). Comparative chemical composition and antimicrobial activity study of essential oils from two imported lemon fruits samples against pathogenic bacteria. Beni-suef University Journal of Basic and Applied Sciences, 3(4), 247–253.

ASTM (1995). Standard test methods for water vapour transmission of materials. Standards Designations: E96–95. In Annual book of ASTM standards (pp. 406–413). Philadelphia, PA: American Society for Testing and Materials.

ASTM (1999). Standard test method for specular gloss. Designation (D523). Annual book of ASTM standards, Vol. 06.01 American Society for Testing and Materials, Philadelphia, PA. [+]
AL-Jabri, N. N., & Hossain, M. A. (2014). Comparative chemical composition and antimicrobial activity study of essential oils from two imported lemon fruits samples against pathogenic bacteria. Beni-suef University Journal of Basic and Applied Sciences, 3(4), 247–253.

ASTM (1995). Standard test methods for water vapour transmission of materials. Standards Designations: E96–95. In Annual book of ASTM standards (pp. 406–413). Philadelphia, PA: American Society for Testing and Materials.

ASTM (1999). Standard test method for specular gloss. Designation (D523). Annual book of ASTM standards, Vol. 06.01 American Society for Testing and Materials, Philadelphia, PA.

ASTM (2001). Standard test method for tensile properties of thin plastic sheeting. Standard D882. Annual book of American standard testing methods. American Society for Testing and Materials, Philadelphia, PA.

Bertuzzi, M. A., Castro Vidaurre, E. F., Armada, M., & Gottifredi, J. C. (2007). Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3), 972–978.

Bof, M. J., García, M. A., Locaso, D., & Zambón, Y. (2014). Películas compuestas a base de almidón y quitosano: formulación y caracterización. In Proceedings of the International Conference on Food Innovation. Food Innova 2014 (3rd ed.). (p. 148). Concepción del Uruguay: Universidad Nacional de Entre Ríos.

Bof, M. J., Bordagaray, V. C., Locaso, D. E., & García, M. A. (2015). Chitosan molecular weight effect on starch-composite film properties. Food Hydrocolloids, 51, 281–294.

Bonilla, J., Vargas, M., Atarés, L., & Chiralt, A. (2011). Physical properties of chitosan-basil essential oil edible films as affected by oil content and homogenization conditions. Procedia Food Science, 1, 50–56.

Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2013). Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. Journal of Food Engineering, 114(3), 303–312.

Boumail, A., Salmieri, S., Klimas, E., Tawema, P. O., Bouchard, J., & Lacroix, M. (2013). Characterization of trilayer antimicrobial diffusion films (ADFs) based on methylcellulose–polycaprolactone composites. Journal of Agricultural Food and Chemistry, 61(4), 811–821.

De Campos, A., Teodoro, K. B. R., Marconcini, J. M., & Mattoso, L. H. C. (2011). Effect of fiber treatments on properties of thermoplastic starch/polycaprolactone/sisal biocomposites. Polymers, 21(3), 217–222.

Duarte, M. L., Ferreira, M. C., Marvao, M. R., & Rocha, J. (2002). An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. International Journal of Biological Macromolecules, 31(1–3), 1–8.

García, M. A., Pinotti, A., & Zaritzky, N. E. (2006). Physicochemical, water vapor barrier and mechanical properties of corn starch and chitosan composite films. Starch/Stärke, 58(9), 453–463.

Garcia, N. L., Fama, L., Dufresne, A., Aranguren, M., & Goyanes, S. (2009). A comparison between the physico-chemical properties of tuber and cereal starches. Food Research International, 42, 976–982.

Ghasemlou, M., Aliheidaric, N., Fahmid, R., Shojaee-Aliabadie, S., Keshavarzf, B., Crang, M. J., & Khaksare, R. (2013). Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydrate Polymers, 98(1), 1117–1126.

Han, J. H. (2014). Edible films and coatings: a review. In J. H. Han (Ed.), Innovations in food packaging (pp. 240–255). London: Elsevier.

Hong, Y. H., Lim, G. O., & Song, K. B. (2009). Physical properties of Gelidium corneum gelatin blends films containing grapefruit seed extract or green tea extract and its application in the packaging of pork loins. Journal of Food Science, 74(1), C6–C10.

Hosseini, S. F., Rezaei, M., Zandi, M., & Farahmandghavi, F. (2016). Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chemistry, 194(1), 1266–1274.

Jang, S. A., Shin, Y. J., & Song, K. B. (2011). Effects of rapeseed protein-gelatin film containing grapefruit seed extract on ‘Maehyang’ strawberry quality. International Journal of Food Science and Technology, 46(3), 620–625.

Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids. Food Hydrocolloids, 26(1), 302–310.

Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013a). Physical properties and antioxidant capacity of starch-sodium caseinate films containing lipids. Journal of Food Engineering, 116(3), 695–702.

Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2013b). Phase transitions in starch based films containing fatty acids. Effect on water sorption and mechanical behavior. Food Hydrocolloids, 30(1), 408–418.

Jiménez, A., Sánchez-González, L., Desobry, S., Chiralt, A., & Tehrany, E. A. (2014). Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocolloids, 35, 159–169.

Kanmani, P., & Rhim, J.-W. (2014). Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract. Carbohydrate Polymers, 102, 708–716.

Kavoosi, G., Dadfar, S. M. M., & Purfard, A. M. (2013). Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. Journal of Food Science, 78(2), 244–250.

Lim, G. O., Jang, S. A., & Song, K. B. (2010). Physical and antimicrobial properties of Gelidium corneum/nano-clay composite film containing grapefruit seed extract and thymol. Journal of Food Engineering, 98(4), 415–420.

Liu, H., Du, Y., Wang, X., & Sun, L. (2002). Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 95(2), 147–155.

Luo, X., Li, J., & Lin, X. (2012). Effect of gelatinization and additives on morphology and thermal behavior of cornstarch/PVA blend films. Carbohydrate Polymers, 90(4), 1595–1600.

Martínez-Camacho, A. P., Cortez-Rocha, M. O., Ezquerra-Brauer, J. M., Graciano-Verdugo, A. Z., Rodriguez-Félix, F., Castillo-Ortega, M. M., Yépiz-Gómez, M. S., & Plascencia-Jatomea, M. (2010). Chitosan composite films: thermal, structural, mechanical and antifungal properties. Carbohydrate Polymers, 82(2), 305–315.

Mc Hugh, T. H., Avena-Bustillos, R., & Krochta, J. M. (1993). Hydrophobic edible films: modified procedure for water vapor permeability and explanation of thickness effects. Journal of Food Science, 58(4), 899–903.

Mei, J., Yuan, Y., Wu, Y., & Li, Y. (2013). Characterization of edible starch–chitosan film and its application in the storage of Mongolian cheese. International Journal of Biological Macromolecules, 57, 17–21.

No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74(1–2), 65–72.

Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocolloids, 38, 66–75.

Ortega-Toro, R., Collazo-Bigliardi, S., Talens, P., & Chiralt, A. (2015). Influence of citric acid on the properties and stability of starch-polycaprolactone based films. Journal of Applied Polymer Science, 133, 42220. doi: 10.1002/app.42220 .

Perdones, A., Sánchez-González, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32–41.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237.

Rivero, S., García, M. A., & Pinotti, A. (2010). Crosslinking capacity of tannic acid in plasticized chitosan films. Carbohydrate Polymers, 82(2), 270–276.

Sánchez Aldana, D., Contreras-Esquivela, J. C., Nevárez-Moorillón, G. V., & Aguilar, C. N. (2014). Caracterización de películas comestibles a base de extractos pécticos y aceite esencial de limón Mexicano. CyTA - Journal of Food, 12, 1–9.

Sanchez-Gonzalez, L., Cháfer, M., Chiralt, A., & Gonzalez-Martínez, C. (2010). Physical properties of edible chitosan films containing bergamot essential oil and their inhibitory action on Penicillium italicum. Carbohydrate Polymers, 82(2), 277–283.

Song, H. Y., Shin, Y. J., & Song, K. B. (2012). Preparation of a barley bran protein–gelatin composite film containing grapefruit seed extract and its application in salmon packaging. Journal of Food Engineering, 113(4), 541–547.

Teixeira, B., Marques, A., Ramos, C., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A., & Nunes, M. L. (2013). Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products, 43, 587–595.

Tepe, B., Sokmen, M., Sokmen, A., Daferera, D., & Polissiou, M. (2005). Antimicrobial and antioxidative activity of the essential oil and various extracts of Cyclotrichium origanifolium (Labill) Manden & Scheng. Journal of Food Engineering, 69(3), 335–342.

Tongnuanchan, P., Benjakul, S., & Prodpran, S. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571–1579.

Tsai, G.-J., Su, W.-H., Chen, H.-C., & Pan, C.-L. (2002). Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fisheries Science, 68(1), 170–177.

Vargas, M., Sánchez-González, L., Cháfer, M., Chiralt, A., & González-Martínez, C. (2012). Edible chitosan coatings for fresh and minimally processed foods. In K. L. Yam & D. S. Lee (Eds.), Emerging food packaging technologies: principles and practice (pp. 66–95). Oxford, Philadelphia, PA: Woodhead Publishing.

Villalobos, R., Chanona, J., Hernández, P., Gutiérrez, G., & Chiralt, A. (2005). Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hydrocolloids, 19(1), 53–61.

Viuda-Martos, M., Ruiz-Navajas, Y., Fernandez-Lopez, J., & Perez-Alvarez, J. (2008). Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Journal of Food Control, 19(12), 1130–1138.

Wilhelm, H., Sierakowski, M., Souza, G. & Wypych, F. (2003). Starch films reinforced with mineral clay. Carbohydrate Polymers, 52, 101–110.

Xu, W., Qu, W., Huang, K., Guo, F., Yang, J., Zhao, H., & Luo, Y.-B. (2007a). Antibacterial effect of grapefruit seed extract on food-borne pathogens and its application in the preservation of minimally processed vegetables. Postharvest Biology and Technology, 45(1), 126–133.

Xu, W.-T., Huang, K.-L., Guo, F., Qu, W., Yang, J.-J., Liang, Z.-H., & Luo, Y.-B. (2007b). Postharvest grapefruit seed extract and chitosan treatments of table-grapes to control Botrytis cinerea. Postharvest Biology and Technology, 46(1), 86–94.

Zhang, H. Y., Arab Tehrany, E., Kahn, C. J. F., Ponçot, M., Linder, M., & Cleymand, F. (2012). Effects of nanoliposomes based on soya, rapeseed and fish lecithins on chitosan thin films designed for tissue engineering. Carbohydrate Polymers, 88(2), 618–627.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem