- -

Influence of the composition of hybrid perovskites on their performance in solar cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the composition of hybrid perovskites on their performance in solar cells

Mostrar el registro completo del ítem

Albero-Sancho, J.; Asiri, AM.; García Gómez, H. (2016). Influence of the composition of hybrid perovskites on their performance in solar cells. Journal of Materials Chemistry. 4(12):4353-4364. https://doi.org/10.1039/c6ta00334f

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/101447

Ficheros en el ítem

Metadatos del ítem

Título: Influence of the composition of hybrid perovskites on their performance in solar cells
Autor: Albero-Sancho, Josep Asiri, Abdullah M. García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] During the last 5 years, power conversion efficiencies of hybrid (organic-inorganic) halide perovskite solar cells have shown impressive advances. This success has been partly due to the advances in thin film deposition ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Materials Chemistry. (issn: 0959-9428 )
DOI: 10.1039/c6ta00334f
Editorial:
The Royal Society of Chemistry
Versión del editor: http://doi.org/10.1039/c6ta00334f
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F014/ES/SINTESIS DE GRAFENO Y DERIVADOS COMO SENSORES O CON PROPIEDADES OPTOELECTRONICAS/
Agradecimientos:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-C2-1-R) and Generalidad Valenciana (Prometeo 2013/014) is gratefully acknowledged.
Tipo: Artículo

References

Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051. doi:10.1021/ja809598r

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604

Zhou, H., Chen, Q., Li, G., Luo, S., Song, T. -b., Duan, H.-S., … Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542-546. doi:10.1126/science.1254050 [+]
Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051. doi:10.1021/ja809598r

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604

Zhou, H., Chen, Q., Li, G., Luo, S., Song, T. -b., Duan, H.-S., … Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542-546. doi:10.1126/science.1254050

Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476-480. doi:10.1038/nature14133

Stranks, S. D., Nayak, P. K., Zhang, W., Stergiopoulos, T., & Snaith, H. J. (2015). Formation of Thin Films of Organic-Inorganic Perovskites for High-Efficiency Solar Cells. Angewandte Chemie International Edition, 54(11), 3240-3248. doi:10.1002/anie.201410214

Boix, P. P., Agarwala, S., Koh, T. M., Mathews, N., & Mhaisalkar, S. G. (2015). Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. The Journal of Physical Chemistry Letters, 6(5), 898-907. doi:10.1021/jz502547f

Luo, S., & Daoud, W. A. (2015). Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A, 3(17), 8992-9010. doi:10.1039/c4ta04953e

Burlakov, V. M., Eperon, G. E., Snaith, H. J., Chapman, S. J., & Goriely, A. (2014). Controlling coverage of solution cast materials with unfavourable surface interactions. Applied Physics Letters, 104(9), 091602. doi:10.1063/1.4867263

Park, N.-G. (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18(2), 65-72. doi:10.1016/j.mattod.2014.07.007

Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., & Snaith, H. J. (2013). Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 24(1), 151-157. doi:10.1002/adfm.201302090

Unger, E. L., Hoke, E. T., Bailie, C. D., Nguyen, W. H., Bowring, A. R., Heumüller, T., … McGehee, M. D. (2014). Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci., 7(11), 3690-3698. doi:10.1039/c4ee02465f

Leijtens, T., Lauber, B., Eperon, G. E., Stranks, S. D., & Snaith, H. J. (2014). The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. The Journal of Physical Chemistry Letters, 5(7), 1096-1102. doi:10.1021/jz500209g

Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398. doi:10.1038/nature12509

Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 13(9), 897-903. doi:10.1038/nmat4014

Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S. M., Choi, M., & Park, N.-G. (2015). Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. Journal of the American Chemical Society, 137(27), 8696-8699. doi:10.1021/jacs.5b04930

Liu, D., & Kelly, T. L. (2013). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 8(2), 133-138. doi:10.1038/nphoton.2013.342

Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., … Yang, Y. (2013). Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 136(2), 622-625. doi:10.1021/ja411509g

Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., … Huang, J. (2014). Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci., 7(8), 2619-2623. doi:10.1039/c4ee01138d

Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316-319. doi:10.1038/nature12340

Zhao, Y., & Zhu, K. (2014). Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 5(23), 4175-4186. doi:10.1021/jz501983v

Choi, J. J., Yang, X., Norman, Z. M., Billinge, S. J. L., & Owen, J. S. (2013). Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells. Nano Letters, 14(1), 127-133. doi:10.1021/nl403514x

Zheng, L., Zhang, D., Ma, Y., Lu, Z., Chen, Z., Wang, S., … Gong, Q. (2015). Morphology control of the perovskite films for efficient solar cells. Dalton Transactions, 44(23), 10582-10593. doi:10.1039/c4dt03869j

Baikie, T., Fang, Y., Kadro, J. M., Schreyer, M., Wei, F., Mhaisalkar, S. G., … White, T. J. (2013). Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 1(18), 5628. doi:10.1039/c3ta10518k

Kieslich, G., Sun, S., & Cheetham, A. K. (2014). Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem. Sci., 5(12), 4712-4715. doi:10.1039/c4sc02211d

Amat, A., Mosconi, E., Ronca, E., Quarti, C., Umari, P., Nazeeruddin, M. K., … De Angelis, F. (2014). Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting. Nano Letters, 14(6), 3608-3616. doi:10.1021/nl5012992

Lee, J.-W., Seol, D.-J., Cho, A.-N., & Park, N.-G. (2014). High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3. Advanced Materials, 26(29), 4991-4998. doi:10.1002/adma.201401137

Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., & Snaith, H. J. (2014). Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3), 982. doi:10.1039/c3ee43822h

Pang, S., Hu, H., Zhang, J., Lv, S., Yu, Y., Wei, F., … Cui, G. (2014). NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chemistry of Materials, 26(3), 1485-1491. doi:10.1021/cm404006p

Im, J.-H., Chung, J., Kim, S.-J., & Park, N.-G. (2012). Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Research Letters, 7(1), 353. doi:10.1186/1556-276x-7-353

Koh, T. M., Fu, K., Fang, Y., Chen, S., Sum, T. C., Mathews, N., … Baikie, T. (2013). Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. The Journal of Physical Chemistry C, 118(30), 16458-16462. doi:10.1021/jp411112k

Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240), 1234-1237. doi:10.1126/science.aaa9272

Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M. K., Maier, J., & Grätzel, M. (2014). Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angewandte Chemie International Edition, 53(12), 3151-3157. doi:10.1002/anie.201309361

Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., … Han, H. (2014). A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194), 295-298. doi:10.1126/science.1254763

Kulbak, M., Cahen, D., & Hodes, G. (2015). How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3Cells. The Journal of Physical Chemistry Letters, 6(13), 2452-2456. doi:10.1021/acs.jpclett.5b00968

Choi, H., Jeong, J., Kim, H.-B., Kim, S., Walker, B., Kim, G.-H., & Kim, J. Y. (2014). Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 7, 80-85. doi:10.1016/j.nanoen.2014.04.017

D. B. Mitzi , in Progress in Inorganic Chemistry, John Wiley & Sons, Inc., 2007, pp. 1–121

Mitzi, D. B., Feild, C. A., Harrison, W. T. A., & Guloy, A. M. (1994). Conducting tin halides with a layered organic-based perovskite structure. Nature, 369(6480), 467-469. doi:10.1038/369467a0

Mitzi, D. B. (1996). Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4(M = Ge, Sn, Pb). Chemistry of Materials, 8(3), 791-800. doi:10.1021/cm9505097

Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A., & Guloy, A. M. (1995). Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets. Science, 267(5203), 1473-1476. doi:10.1126/science.267.5203.1473

Noel, N. K., Stranks, S. D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., … Snaith, H. J. (2014). Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci., 7(9), 3061-3068. doi:10.1039/c4ee01076k

Stoumpos, C. C., Malliakas, C. D., & Kanatzidis, M. G. (2013). Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chemistry, 52(15), 9019-9038. doi:10.1021/ic401215x

Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., … Hayase, S. (2014). CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry Letters, 5(6), 1004-1011. doi:10.1021/jz5002117

Hao, F., Stoumpos, C. C., Chang, R. P. H., & Kanatzidis, M. G. (2014). Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells. Journal of the American Chemical Society, 136(22), 8094-8099. doi:10.1021/ja5033259

Zuo, F., Williams, S. T., Liang, P.-W., Chueh, C.-C., Liao, C.-Y., & Jen, A. K.-Y. (2014). Binary-Metal Perovskites Toward High-Performance Planar-Heterojunction Hybrid Solar Cells. Advanced Materials, 26(37), 6454-6460. doi:10.1002/adma.201401641

Shen, Q., Ogomi, Y., Chang, J., Toyoda, T., Fujiwara, K., Yoshino, K., … Hayase, S. (2015). Optical absorption, charge separation and recombination dynamics in Sn/Pb cocktail perovskite solar cells and their relationships to photovoltaic performances. Journal of Materials Chemistry A, 3(17), 9308-9316. doi:10.1039/c5ta01246e

Chung, I., Lee, B., He, J., Chang, R. P. H., & Kanatzidis, M. G. (2012). All-solid-state dye-sensitized solar cells with high efficiency. Nature, 485(7399), 486-489. doi:10.1038/nature11067

Kumar, M. H., Dharani, S., Leong, W. L., Boix, P. P., Prabhakar, R. R., Baikie, T., … Mathews, N. (2014). Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Advanced Materials, 26(41), 7122-7127. doi:10.1002/adma.201401991

Umari, P., Mosconi, E., & De Angelis, F. (2014). Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications. Scientific Reports, 4(1). doi:10.1038/srep04467

D. Cortecchia , H.Arianita Dewi, D.Sabba, T.Baikie, C.Soci and N.Mathews, in EOSAM 2014, European Optical Society, Berlin, 2014

Mostafa, M. F., Semary, M. A., & Ahmed, M. A. (1977). Field dependence of the susceptibility maximum for two-dimensional antiferromagnet. Physics Letters A, 61(3), 183-184. doi:10.1016/0375-9601(77)90287-0

Belhouchet, M., Wamani, W., & Mhiri, T. (2010). Synthesis, structure and spectroscopic investigations of two new organic-inorganic hybrids NH3(C6H4)2NH3CuCl4and NH3(C6H4)2NH3HgCl4. IOP Conference Series: Materials Science and Engineering, 13, 012039. doi:10.1088/1757-899x/13/1/012039

Papavassiliou, G. C., Mousdis, G. A., & Koutselas, I. B. (1999). Some new organic-inorganic hybrid semiconductors based on metal halide units: structural, optical and related properties. Advanced Materials for Optics and Electronics, 9(6), 265-271. doi:10.1002/1099-0712(199911/12)9:6<265::aid-amo390>3.0.co;2-6

Tanaka, K., Takahashi, T., Ban, T., Kondo, T., Uchida, K., & Miura, N. (2003). Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Communications, 127(9-10), 619-623. doi:10.1016/s0038-1098(03)00566-0

Nam, S. B., Reynolds, D. C., Litton, C. W., Almassy, R. J., Collins, T. C., & Wolfe, C. M. (1976). Free-exciton energy spectrum in GaAs. Physical Review B, 13(2), 761-767. doi:10.1103/physrevb.13.761

Suarez, B., Gonzalez-Pedro, V., Ripolles, T. S., Sanchez, R. S., Otero, L., & Mora-Sero, I. (2014). Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 5(10), 1628-1635. doi:10.1021/jz5006797

Hisatomi, T., Kubota, J., & Domen, K. (2014). Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev., 43(22), 7520-7535. doi:10.1039/c3cs60378d

Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar Water Splitting Cells. Chemical Reviews, 110(11), 6446-6473. doi:10.1021/cr1002326

Rühle, S., Segal, A., Vilan, A., Kurtz, S. R., Grinis, L., Zaban, A., … Cahen, D. (2009). A two junction, four terminal photovoltaic device for enhanced light to electric power conversion using a low-cost dichroic mirror. Journal of Renewable and Sustainable Energy, 1(1), 013106. doi:10.1063/1.3081510

Konstantatos, G., Howard, I., Fischer, A., Hoogland, S., Clifford, J., Klem, E., … Sargent, E. H. (2006). Ultrasensitive solution-cast quantum dot photodetectors. Nature, 442(7099), 180-183. doi:10.1038/nature04855

Edri, E., Kirmayer, S., Cahen, D., & Hodes, G. (2013). High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite. The Journal of Physical Chemistry Letters, 4(6), 897-902. doi:10.1021/jz400348q

Ryu, S., Noh, J. H., Jeon, N. J., Chan Kim, Y., Yang, W. S., Seo, J., & Seok, S. I. (2014). Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci., 7(8), 2614-2618. doi:10.1039/c4ee00762j

Heo, J. H., Song, D. H., & Im, S. H. (2014). Planar CH3NH3PbBr3Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin-Coating Process. Advanced Materials, 26(48), 8179-8183. doi:10.1002/adma.201403140

Sheng, R., Ho-Baillie, A., Huang, S., Chen, S., Wen, X., Hao, X., & Green, M. A. (2015). Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition. The Journal of Physical Chemistry C, 119(7), 3545-3549. doi:10.1021/jp512936z

Shi, T., Yin, W.-J., Hong, F., Zhu, K., & Yan, Y. (2015). Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Applied Physics Letters, 106(10), 103902. doi:10.1063/1.4914544

Grätzel, M. (2014). The light and shade of perovskite solar cells. Nature Materials, 13(9), 838-842. doi:10.1038/nmat4065

Bretschneider, S. A., Weickert, J., Dorman, J. A., & Schmidt-Mende, L. (2014). Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Materials, 2(4), 040701. doi:10.1063/1.4871795

Dharani, S., Dewi, H. A., Prabhakar, R. R., Baikie, T., Shi, C., Yonghua, D., … Mhaisalkar, S. G. (2014). Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells. Nanoscale, 6(22), 13854-13860. doi:10.1039/c4nr04007d

Chen, Q., Zhou, H., Fang, Y., Stieg, A. Z., Song, T.-B., Wang, H.-H., … Yang, Y. (2015). The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nature Communications, 6(1). doi:10.1038/ncomms8269

Conings, B., Baeten, L., De Dobbelaere, C., D’Haen, J., Manca, J., & Boyen, H.-G. (2013). Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. Advanced Materials, 26(13), 2041-2046. doi:10.1002/adma.201304803

Liang, P.-W., Liao, C.-Y., Chueh, C.-C., Zuo, F., Williams, S. T., Xin, X.-K., … Jen, A. K.-Y. (2014). Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells. Advanced Materials, 26(22), 3748-3754. doi:10.1002/adma.201400231

Qiu, J., Qiu, Y., Yan, K., Zhong, M., Mu, C., Yan, H., & Yang, S. (2013). All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale, 5(8), 3245. doi:10.1039/c3nr00218g

Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters, 13(4), 1764-1769. doi:10.1021/nl400349b

Aharon, S., Cohen, B. E., & Etgar, L. (2014). Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell. The Journal of Physical Chemistry C, 118(30), 17160-17165. doi:10.1021/jp5023407

Edri, E., Kirmayer, S., Kulbak, M., Hodes, G., & Cahen, D. (2014). Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. The Journal of Physical Chemistry Letters, 5(3), 429-433. doi:10.1021/jz402706q

Tidhar, Y., Edri, E., Weissman, H., Zohar, D., Hodes, G., Cahen, D., … Kirmayer, S. (2014). Crystallization of Methyl Ammonium Lead Halide Perovskites: Implications for Photovoltaic Applications. Journal of the American Chemical Society, 136(38), 13249-13256. doi:10.1021/ja505556s

Nagane, S., Bansode, U., Game, O., Chhatre, S., & Ogale, S. (2014). CH3NH3PbI(3−x)(BF4)x: molecular ion substituted hybrid perovskite. Chemical Communications, 50(68), 9741. doi:10.1039/c4cc04537h

Mosconi, E., Amat, A., Nazeeruddin, M. K., Grätzel, M., & De Angelis, F. (2013). First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C, 117(27), 13902-13913. doi:10.1021/jp4048659

Weber, D. (1978). CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforschung B, 33(12), 1443-1445. doi:10.1515/znb-1978-1214

http://optics.org/news/6/6/21, Imec presents perovskite photovoltaic module with 8% power conversion efficiency

Shockley, W., & Queisser, H. J. (1961). Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics, 32(3), 510-519. doi:10.1063/1.1736034

Sha, W. E. I., Ren, X., Chen, L., & Choy, W. C. H. (2015). The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 106(22), 221104. doi:10.1063/1.4922150

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem