- -

Influence of the composition of hybrid perovskites on their performance in solar cells

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Influence of the composition of hybrid perovskites on their performance in solar cells

Show simple item record

Files in this item

dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author Asiri, Abdullah M. es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2018-05-06T04:15:11Z
dc.date.available 2018-05-06T04:15:11Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0959-9428 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101447
dc.description.abstract [EN] During the last 5 years, power conversion efficiencies of hybrid (organic-inorganic) halide perovskite solar cells have shown impressive advances. This success has been partly due to the advances in thin film deposition techniques, but also due to the understanding of the chemical and structural characteristics of the hybrid organic-inorganic perovskites that make it possible to modulate their optoelectronic properties. Moreover, engineering the chemical composition of these materials still remains a powerful tool for further improvement of the photovoltaic activity of these materials. The preparation of efficient lead-free hybrid perovskites exhibiting reduced toxicity is one of the main targets. Besides environmental issues, the control of the composition of hybrid perovskites should be used to achieve a decrease in the bandgap energy, trying to extend the photoresponse of the materials into the NIR region. A third target is the long-term stability of devices, a property closely related to the negative influence of humidity and phase transition. This review focuses on showing how the modification of the composition of each of the three components (organic cation, metal and inorganic anion) of the parent hybrid halide perovskite (CH3NH3PbI3) influences the optoelectronic properties, photovoltaic efficiency and stability of these striking materials. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-C2-1-R) and Generalidad Valenciana (Prometeo 2013/014) is gratefully acknowledged.
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation MINISTERIO DE ECONOMIA INDUSTRIA Y COMPETITIVIDAD /CTQ2015-69153-C2-1-R es_ES
dc.relation GENERALITAT VALENCIANA/PROMETEO/2013/014 es_ES
dc.relation.ispartof Journal of Materials Chemistry es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Influence of the composition of hybrid perovskites on their performance in solar cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c6ta00334f es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Albero-Sancho, J.; Asiri, AM.; García Gómez, H. (2016). Influence of the composition of hybrid perovskites on their performance in solar cells. Journal of Materials Chemistry. 4(12):4353-4364. doi:10.1039/c6ta00334f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1039/c6ta00334f es_ES
dc.description.upvformatpinicio 4353 es_ES
dc.description.upvformatpfin 4364 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela 328622 es_ES
dc.contributor.funder GENERALITAT VALENCIANA es_ES
dc.contributor.funder MINISTERIO DE ECONOMIA INDUSTRIA Y COMPETITIVIDAD es_ES
dc.relation.references Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131(17), 6050-6051. doi:10.1021/ja809598r es_ES
dc.relation.references Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604 es_ES
dc.relation.references Zhou, H., Chen, Q., Li, G., Luo, S., Song, T. -b., Duan, H.-S., … Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345(6196), 542-546. doi:10.1126/science.1254050 es_ES
dc.relation.references Jeon, N. J., Noh, J. H., Yang, W. S., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476-480. doi:10.1038/nature14133 es_ES
dc.relation.references Stranks, S. D., Nayak, P. K., Zhang, W., Stergiopoulos, T., & Snaith, H. J. (2015). Formation of Thin Films of Organic-Inorganic Perovskites for High-Efficiency Solar Cells. Angewandte Chemie International Edition, 54(11), 3240-3248. doi:10.1002/anie.201410214 es_ES
dc.relation.references Boix, P. P., Agarwala, S., Koh, T. M., Mathews, N., & Mhaisalkar, S. G. (2015). Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. The Journal of Physical Chemistry Letters, 6(5), 898-907. doi:10.1021/jz502547f es_ES
dc.relation.references Luo, S., & Daoud, W. A. (2015). Recent progress in organic–inorganic halide perovskite solar cells: mechanisms and material design. Journal of Materials Chemistry A, 3(17), 8992-9010. doi:10.1039/c4ta04953e es_ES
dc.relation.references Burlakov, V. M., Eperon, G. E., Snaith, H. J., Chapman, S. J., & Goriely, A. (2014). Controlling coverage of solution cast materials with unfavourable surface interactions. Applied Physics Letters, 104(9), 091602. doi:10.1063/1.4867263 es_ES
dc.relation.references Park, N.-G. (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials Today, 18(2), 65-72. doi:10.1016/j.mattod.2014.07.007 es_ES
dc.relation.references Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely, A., & Snaith, H. J. (2013). Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 24(1), 151-157. doi:10.1002/adfm.201302090 es_ES
dc.relation.references Unger, E. L., Hoke, E. T., Bailie, C. D., Nguyen, W. H., Bowring, A. R., Heumüller, T., … McGehee, M. D. (2014). Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci., 7(11), 3690-3698. doi:10.1039/c4ee02465f es_ES
dc.relation.references Leijtens, T., Lauber, B., Eperon, G. E., Stranks, S. D., & Snaith, H. J. (2014). The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. The Journal of Physical Chemistry Letters, 5(7), 1096-1102. doi:10.1021/jz500209g es_ES
dc.relation.references Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395-398. doi:10.1038/nature12509 es_ES
dc.relation.references Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S., & Seok, S. I. (2014). Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials, 13(9), 897-903. doi:10.1038/nmat4014 es_ES
dc.relation.references Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S. M., Choi, M., & Park, N.-G. (2015). Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. Journal of the American Chemical Society, 137(27), 8696-8699. doi:10.1021/jacs.5b04930 es_ES
dc.relation.references Liu, D., & Kelly, T. L. (2013). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 8(2), 133-138. doi:10.1038/nphoton.2013.342 es_ES
dc.relation.references Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., … Yang, Y. (2013). Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 136(2), 622-625. doi:10.1021/ja411509g es_ES
dc.relation.references Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., … Huang, J. (2014). Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci., 7(8), 2619-2623. doi:10.1039/c4ee01138d es_ES
dc.relation.references Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316-319. doi:10.1038/nature12340 es_ES
dc.relation.references Zhao, Y., & Zhu, K. (2014). Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 5(23), 4175-4186. doi:10.1021/jz501983v es_ES
dc.relation.references Choi, J. J., Yang, X., Norman, Z. M., Billinge, S. J. L., & Owen, J. S. (2013). Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells. Nano Letters, 14(1), 127-133. doi:10.1021/nl403514x es_ES
dc.relation.references Zheng, L., Zhang, D., Ma, Y., Lu, Z., Chen, Z., Wang, S., … Gong, Q. (2015). Morphology control of the perovskite films for efficient solar cells. Dalton Transactions, 44(23), 10582-10593. doi:10.1039/c4dt03869j es_ES
dc.relation.references Baikie, T., Fang, Y., Kadro, J. M., Schreyer, M., Wei, F., Mhaisalkar, S. G., … White, T. J. (2013). Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A, 1(18), 5628. doi:10.1039/c3ta10518k es_ES
dc.relation.references Kieslich, G., Sun, S., & Cheetham, A. K. (2014). Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem. Sci., 5(12), 4712-4715. doi:10.1039/c4sc02211d es_ES
dc.relation.references Amat, A., Mosconi, E., Ronca, E., Quarti, C., Umari, P., Nazeeruddin, M. K., … De Angelis, F. (2014). Cation-Induced Band-Gap Tuning in Organohalide Perovskites: Interplay of Spin–Orbit Coupling and Octahedra Tilting. Nano Letters, 14(6), 3608-3616. doi:10.1021/nl5012992 es_ES
dc.relation.references Lee, J.-W., Seol, D.-J., Cho, A.-N., & Park, N.-G. (2014). High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3. Advanced Materials, 26(29), 4991-4998. doi:10.1002/adma.201401137 es_ES
dc.relation.references Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herz, L. M., & Snaith, H. J. (2014). Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science, 7(3), 982. doi:10.1039/c3ee43822h es_ES
dc.relation.references Pang, S., Hu, H., Zhang, J., Lv, S., Yu, Y., Wei, F., … Cui, G. (2014). NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chemistry of Materials, 26(3), 1485-1491. doi:10.1021/cm404006p es_ES
dc.relation.references Im, J.-H., Chung, J., Kim, S.-J., & Park, N.-G. (2012). Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Research Letters, 7(1), 353. doi:10.1186/1556-276x-7-353 es_ES
dc.relation.references Koh, T. M., Fu, K., Fang, Y., Chen, S., Sum, T. C., Mathews, N., … Baikie, T. (2013). Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells. The Journal of Physical Chemistry C, 118(30), 16458-16462. doi:10.1021/jp411112k es_ES
dc.relation.references Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J., & Seok, S. I. (2015). High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 348(6240), 1234-1237. doi:10.1126/science.aaa9272 es_ES
dc.relation.references Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M. K., Maier, J., & Grätzel, M. (2014). Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angewandte Chemie International Edition, 53(12), 3151-3157. doi:10.1002/anie.201309361 es_ES
dc.relation.references Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., … Han, H. (2014). A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 345(6194), 295-298. doi:10.1126/science.1254763 es_ES
dc.relation.references Kulbak, M., Cahen, D., & Hodes, G. (2015). How Important Is the Organic Part of Lead Halide Perovskite Photovoltaic Cells? Efficient CsPbBr3Cells. The Journal of Physical Chemistry Letters, 6(13), 2452-2456. doi:10.1021/acs.jpclett.5b00968 es_ES
dc.relation.references Choi, H., Jeong, J., Kim, H.-B., Kim, S., Walker, B., Kim, G.-H., & Kim, J. Y. (2014). Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy, 7, 80-85. doi:10.1016/j.nanoen.2014.04.017 es_ES
dc.relation.references D. B. Mitzi , in Progress in Inorganic Chemistry, John Wiley & Sons, Inc., 2007, pp. 1–121 es_ES
dc.relation.references Mitzi, D. B., Feild, C. A., Harrison, W. T. A., & Guloy, A. M. (1994). Conducting tin halides with a layered organic-based perovskite structure. Nature, 369(6480), 467-469. doi:10.1038/369467a0 es_ES
dc.relation.references Mitzi, D. B. (1996). Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4(M = Ge, Sn, Pb). Chemistry of Materials, 8(3), 791-800. doi:10.1021/cm9505097 es_ES
dc.relation.references Mitzi, D. B., Wang, S., Feild, C. A., Chess, C. A., & Guloy, A. M. (1995). Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets. Science, 267(5203), 1473-1476. doi:10.1126/science.267.5203.1473 es_ES
dc.relation.references Noel, N. K., Stranks, S. D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., … Snaith, H. J. (2014). Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci., 7(9), 3061-3068. doi:10.1039/c4ee01076k es_ES
dc.relation.references Stoumpos, C. C., Malliakas, C. D., & Kanatzidis, M. G. (2013). Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chemistry, 52(15), 9019-9038. doi:10.1021/ic401215x es_ES
dc.relation.references Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., … Hayase, S. (2014). CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry Letters, 5(6), 1004-1011. doi:10.1021/jz5002117 es_ES
dc.relation.references Hao, F., Stoumpos, C. C., Chang, R. P. H., & Kanatzidis, M. G. (2014). Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells. Journal of the American Chemical Society, 136(22), 8094-8099. doi:10.1021/ja5033259 es_ES
dc.relation.references Zuo, F., Williams, S. T., Liang, P.-W., Chueh, C.-C., Liao, C.-Y., & Jen, A. K.-Y. (2014). Binary-Metal Perovskites Toward High-Performance Planar-Heterojunction Hybrid Solar Cells. Advanced Materials, 26(37), 6454-6460. doi:10.1002/adma.201401641 es_ES
dc.relation.references Shen, Q., Ogomi, Y., Chang, J., Toyoda, T., Fujiwara, K., Yoshino, K., … Hayase, S. (2015). Optical absorption, charge separation and recombination dynamics in Sn/Pb cocktail perovskite solar cells and their relationships to photovoltaic performances. Journal of Materials Chemistry A, 3(17), 9308-9316. doi:10.1039/c5ta01246e es_ES
dc.relation.references Chung, I., Lee, B., He, J., Chang, R. P. H., & Kanatzidis, M. G. (2012). All-solid-state dye-sensitized solar cells with high efficiency. Nature, 485(7399), 486-489. doi:10.1038/nature11067 es_ES
dc.relation.references Kumar, M. H., Dharani, S., Leong, W. L., Boix, P. P., Prabhakar, R. R., Baikie, T., … Mathews, N. (2014). Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Advanced Materials, 26(41), 7122-7127. doi:10.1002/adma.201401991 es_ES
dc.relation.references Umari, P., Mosconi, E., & De Angelis, F. (2014). Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications. Scientific Reports, 4(1). doi:10.1038/srep04467 es_ES
dc.relation.references D. Cortecchia , H.Arianita Dewi, D.Sabba, T.Baikie, C.Soci and N.Mathews, in EOSAM 2014, European Optical Society, Berlin, 2014 es_ES
dc.relation.references Mostafa, M. F., Semary, M. A., & Ahmed, M. A. (1977). Field dependence of the susceptibility maximum for two-dimensional antiferromagnet. Physics Letters A, 61(3), 183-184. doi:10.1016/0375-9601(77)90287-0 es_ES
dc.relation.references Belhouchet, M., Wamani, W., & Mhiri, T. (2010). Synthesis, structure and spectroscopic investigations of two new organic-inorganic hybrids NH3(C6H4)2NH3CuCl4and NH3(C6H4)2NH3HgCl4. IOP Conference Series: Materials Science and Engineering, 13, 012039. doi:10.1088/1757-899x/13/1/012039 es_ES
dc.relation.references Papavassiliou, G. C., Mousdis, G. A., & Koutselas, I. B. (1999). Some new organic-inorganic hybrid semiconductors based on metal halide units: structural, optical and related properties. Advanced Materials for Optics and Electronics, 9(6), 265-271. doi:10.1002/1099-0712(199911/12)9:6<265::aid-amo390>3.0.co;2-6 es_ES
dc.relation.references Tanaka, K., Takahashi, T., Ban, T., Kondo, T., Uchida, K., & Miura, N. (2003). Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Communications, 127(9-10), 619-623. doi:10.1016/s0038-1098(03)00566-0 es_ES
dc.relation.references Nam, S. B., Reynolds, D. C., Litton, C. W., Almassy, R. J., Collins, T. C., & Wolfe, C. M. (1976). Free-exciton energy spectrum in GaAs. Physical Review B, 13(2), 761-767. doi:10.1103/physrevb.13.761 es_ES
dc.relation.references Suarez, B., Gonzalez-Pedro, V., Ripolles, T. S., Sanchez, R. S., Otero, L., & Mora-Sero, I. (2014). Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. The Journal of Physical Chemistry Letters, 5(10), 1628-1635. doi:10.1021/jz5006797 es_ES
dc.relation.references Hisatomi, T., Kubota, J., & Domen, K. (2014). Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev., 43(22), 7520-7535. doi:10.1039/c3cs60378d es_ES
dc.relation.references Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar Water Splitting Cells. Chemical Reviews, 110(11), 6446-6473. doi:10.1021/cr1002326 es_ES
dc.relation.references Rühle, S., Segal, A., Vilan, A., Kurtz, S. R., Grinis, L., Zaban, A., … Cahen, D. (2009). A two junction, four terminal photovoltaic device for enhanced light to electric power conversion using a low-cost dichroic mirror. Journal of Renewable and Sustainable Energy, 1(1), 013106. doi:10.1063/1.3081510 es_ES
dc.relation.references Konstantatos, G., Howard, I., Fischer, A., Hoogland, S., Clifford, J., Klem, E., … Sargent, E. H. (2006). Ultrasensitive solution-cast quantum dot photodetectors. Nature, 442(7099), 180-183. doi:10.1038/nature04855 es_ES
dc.relation.references Edri, E., Kirmayer, S., Cahen, D., & Hodes, G. (2013). High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite. The Journal of Physical Chemistry Letters, 4(6), 897-902. doi:10.1021/jz400348q es_ES
dc.relation.references Ryu, S., Noh, J. H., Jeon, N. J., Chan Kim, Y., Yang, W. S., Seo, J., & Seok, S. I. (2014). Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci., 7(8), 2614-2618. doi:10.1039/c4ee00762j es_ES
dc.relation.references Heo, J. H., Song, D. H., & Im, S. H. (2014). Planar CH3NH3PbBr3Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin-Coating Process. Advanced Materials, 26(48), 8179-8183. doi:10.1002/adma.201403140 es_ES
dc.relation.references Sheng, R., Ho-Baillie, A., Huang, S., Chen, S., Wen, X., Hao, X., & Green, M. A. (2015). Methylammonium Lead Bromide Perovskite-Based Solar Cells by Vapor-Assisted Deposition. The Journal of Physical Chemistry C, 119(7), 3545-3549. doi:10.1021/jp512936z es_ES
dc.relation.references Shi, T., Yin, W.-J., Hong, F., Zhu, K., & Yan, Y. (2015). Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Applied Physics Letters, 106(10), 103902. doi:10.1063/1.4914544 es_ES
dc.relation.references Grätzel, M. (2014). The light and shade of perovskite solar cells. Nature Materials, 13(9), 838-842. doi:10.1038/nmat4065 es_ES
dc.relation.references Bretschneider, S. A., Weickert, J., Dorman, J. A., & Schmidt-Mende, L. (2014). Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Materials, 2(4), 040701. doi:10.1063/1.4871795 es_ES
dc.relation.references Dharani, S., Dewi, H. A., Prabhakar, R. R., Baikie, T., Shi, C., Yonghua, D., … Mhaisalkar, S. G. (2014). Incorporation of Cl into sequentially deposited lead halide perovskite films for highly efficient mesoporous solar cells. Nanoscale, 6(22), 13854-13860. doi:10.1039/c4nr04007d es_ES
dc.relation.references Chen, Q., Zhou, H., Fang, Y., Stieg, A. Z., Song, T.-B., Wang, H.-H., … Yang, Y. (2015). The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nature Communications, 6(1). doi:10.1038/ncomms8269 es_ES
dc.relation.references Conings, B., Baeten, L., De Dobbelaere, C., D’Haen, J., Manca, J., & Boyen, H.-G. (2013). Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. Advanced Materials, 26(13), 2041-2046. doi:10.1002/adma.201304803 es_ES
dc.relation.references Liang, P.-W., Liao, C.-Y., Chueh, C.-C., Zuo, F., Williams, S. T., Xin, X.-K., … Jen, A. K.-Y. (2014). Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells. Advanced Materials, 26(22), 3748-3754. doi:10.1002/adma.201400231 es_ES
dc.relation.references Qiu, J., Qiu, Y., Yan, K., Zhong, M., Mu, C., Yan, H., & Yang, S. (2013). All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale, 5(8), 3245. doi:10.1039/c3nr00218g es_ES
dc.relation.references Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., & Seok, S. I. (2013). Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters, 13(4), 1764-1769. doi:10.1021/nl400349b es_ES
dc.relation.references Aharon, S., Cohen, B. E., & Etgar, L. (2014). Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell. The Journal of Physical Chemistry C, 118(30), 17160-17165. doi:10.1021/jp5023407 es_ES
dc.relation.references Edri, E., Kirmayer, S., Kulbak, M., Hodes, G., & Cahen, D. (2014). Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. The Journal of Physical Chemistry Letters, 5(3), 429-433. doi:10.1021/jz402706q es_ES
dc.relation.references Tidhar, Y., Edri, E., Weissman, H., Zohar, D., Hodes, G., Cahen, D., … Kirmayer, S. (2014). Crystallization of Methyl Ammonium Lead Halide Perovskites: Implications for Photovoltaic Applications. Journal of the American Chemical Society, 136(38), 13249-13256. doi:10.1021/ja505556s es_ES
dc.relation.references Nagane, S., Bansode, U., Game, O., Chhatre, S., & Ogale, S. (2014). CH3NH3PbI(3−x)(BF4)x: molecular ion substituted hybrid perovskite. Chemical Communications, 50(68), 9741. doi:10.1039/c4cc04537h es_ES
dc.relation.references Mosconi, E., Amat, A., Nazeeruddin, M. K., Grätzel, M., & De Angelis, F. (2013). First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C, 117(27), 13902-13913. doi:10.1021/jp4048659 es_ES
dc.relation.references Weber, D. (1978). CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforschung B, 33(12), 1443-1445. doi:10.1515/znb-1978-1214 es_ES
dc.relation.references http://optics.org/news/6/6/21, Imec presents perovskite photovoltaic module with 8% power conversion efficiency es_ES
dc.relation.references Shockley, W., & Queisser, H. J. (1961). Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics, 32(3), 510-519. doi:10.1063/1.1736034 es_ES
dc.relation.references Sha, W. E. I., Ren, X., Chen, L., & Choy, W. C. H. (2015). The efficiency limit of CH3NH3PbI3 perovskite solar cells. Applied Physics Letters, 106(22), 221104. doi:10.1063/1.4922150 es_ES


This item appears in the following Collection(s)

Show simple item record