- -

High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes

Show full item record

Ruiz-Tórtola, Á.; Prats-Quílez, F.; Gonzalez-Lucas, D.; Bañuls Polo, M.; Maquieira Catala, A.; Wheeler, G.; Dalmay, T.... (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express. 9(4):1717-1727. doi:10.1364/BOE.9.001717

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/101449

Files in this item

Item Metadata

Title: High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] A label-free sensor, based on the combination of silicon photonic bandgap (PBG) structures with immobilized molecular beacon (MB) probes, is experimentally developed. Complementary target oligonucleotides are specifically ...[+]
Subjects: Mach-zehnder interferometer , Microring resonators , Multiplexed detection , Optical biosensors , Binding-kinetics , Hybridization
Copyrigths: Reconocimiento (by)
Source:
Biomedical Optics Express. (eissn: 2156-7085 )
DOI: 10.1364/BOE.9.001717
Publisher:
Optical Society of America
Publisher version: https://doi.org/10.1364/BOE.9.001717
Project ID: info:eu-repo/grantAgreement/EC/H2020/644242/EU
Thanks:
European Commission through the Horizon 2020 Program (ICT-644242 SAPHELY project).
Type: Artículo

References

He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5(7), 522-531. doi:10.1038/nrg1379

Gutierrez-Arcelus, M., Ongen, H., Lappalainen, T., Montgomery, S. B., Buil, A., Yurovsky, A., … Dermitzakis, E. T. (2015). Tissue-Specific Effects of Genetic and Epigenetic Variation on Gene Regulation and Splicing. PLOS Genetics, 11(1), e1004958. doi:10.1371/journal.pgen.1004958

Debernardi, S., Skoulakis, S., Molloy, G., Chaplin, T., Dixon-McIver, A., & Young, B. D. (2007). MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia, 21(5), 912-916. doi:10.1038/sj.leu.2404605 [+]
He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5(7), 522-531. doi:10.1038/nrg1379

Gutierrez-Arcelus, M., Ongen, H., Lappalainen, T., Montgomery, S. B., Buil, A., Yurovsky, A., … Dermitzakis, E. T. (2015). Tissue-Specific Effects of Genetic and Epigenetic Variation on Gene Regulation and Splicing. PLOS Genetics, 11(1), e1004958. doi:10.1371/journal.pgen.1004958

Debernardi, S., Skoulakis, S., Molloy, G., Chaplin, T., Dixon-McIver, A., & Young, B. D. (2007). MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia, 21(5), 912-916. doi:10.1038/sj.leu.2404605

Maute, R. L., Schneider, C., Sumazin, P., Holmes, A., Califano, A., Basso, K., & Dalla-Favera, R. (2013). tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proceedings of the National Academy of Sciences, 110(4), 1404-1409. doi:10.1073/pnas.1206761110

Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., … Johnson, J. M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027), 769-773. doi:10.1038/nature03315

Dunne, J., Cullmann, C., Ritter, M., Soria, N. M., Drescher, B., Debernardi, S., … Heidenreich, O. (2006). siRNA-mediated AML1/MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts. Oncogene, 25(45), 6067-6078. doi:10.1038/sj.onc.1209638

Lin, C.-H., Jackson, A. L., Guo, J., Linsley, P. S., & Eisenman, R. N. (2009). Myc-regulated microRNAs attenuate embryonic stem cell differentiation. The EMBO Journal, 28(20), 3157-3170. doi:10.1038/emboj.2009.254

Rideout, E. J., Marshall, L., & Grewal, S. S. (2012). Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. Proceedings of the National Academy of Sciences, 109(4), 1139-1144. doi:10.1073/pnas.1113311109

Hornstein, E., Mansfield, J. H., Yekta, S., Hu, J. K.-H., Harfe, B. D., McManus, M. T., … Tabin, C. J. (2005). The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature, 438(7068), 671-674. doi:10.1038/nature04138

Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., & Greenberg, M. E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283-289. doi:10.1038/nature04367

Poethig, R. S. (2009). Small RNAs and developmental timing in plants. Current Opinion in Genetics & Development, 19(4), 374-378. doi:10.1016/j.gde.2009.06.001

Fineberg, S. K., Kosik, K. S., & Davidson, B. L. (2009). MicroRNAs Potentiate Neural Development. Neuron, 64(3), 303-309. doi:10.1016/j.neuron.2009.10.020

Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 Is an Antiapoptotic Factor in Human Glioblastoma Cells. Cancer Research, 65(14), 6029-6033. doi:10.1158/0008-5472.can-05-0137

Saberi, M., Bjelica, D., Schenk, S., Imamura, T., Bandyopadhyay, G., Li, P., … Olefsky, J. M. (2009). Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes. American Journal of Physiology-Endocrinology and Metabolism, 297(5), E1137-E1146. doi:10.1152/ajpendo.00158.2009

Walker, M. D. (2008). Role of MicroRNA in Pancreatic  -Cells: Where More Is Less. Diabetes, 57(10), 2567-2568. doi:10.2337/db08-0934

Muhonen, P., & Holthofer, H. (2008). Epigenetic and microRNA-mediated regulation in diabetes. Nephrology Dialysis Transplantation, 24(4), 1088-1096. doi:10.1093/ndt/gfn728

Liu, E. Y., Cali, C. P., & Lee, E. B. (2017). RNA metabolism in neurodegenerative disease. Disease Models & Mechanisms, 10(5), 509-518. doi:10.1242/dmm.028613

Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., … Hammond, S. M. (2007). microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, 8(2), R27. doi:10.1186/gb-2007-8-2-r27

Lee, J. W., Beebe, K., Nangle, L. A., Jang, J., Longo-Guess, C. M., Cook, S. A., … Ackerman, S. L. (2006). Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature, 443(7107), 50-55. doi:10.1038/nature05096

Goodarzi, H., Liu, X., Nguyen, H. C. B., Zhang, S., Fish, L., & Tavazoie, S. F. (2015). Endogenous tRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement. Cell, 161(4), 790-802. doi:10.1016/j.cell.2015.02.053

Judge, A. D., Robbins, M., Tavakoli, I., Levi, J., Hu, L., Fronda, A., … MacLachlan, I. (2009). Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. Journal of Clinical Investigation, 119(3), 661-673. doi:10.1172/jci37515

Lodes, M. J., Caraballo, M., Suciu, D., Munro, S., Kumar, A., & Anderson, B. (2009). Detection of Cancer with Serum miRNAs on an Oligonucleotide Microarray. PLoS ONE, 4(7), e6229. doi:10.1371/journal.pone.0006229

Casanova-Salas, I., Rubio-Briones, J., Fernández-Serra, A., & López-Guerrero, J. A. (2012). miRNAs as biomarkers in prostate cancer. Clinical and Translational Oncology, 14(11), 803-811. doi:10.1007/s12094-012-0877-0

Várallyay, É., Burgyán, J., & Havelda, Z. (2008). MicroRNA detection by northern blotting using locked nucleic acid probes. Nature Protocols, 3(2), 190-196. doi:10.1038/nprot.2007.528

Benes, V., & Castoldi, M. (2010). Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods, 50(4), 244-249. doi:10.1016/j.ymeth.2010.01.026

Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of Tissue-Specific MicroRNAs from Mouse. Current Biology, 12(9), 735-739. doi:10.1016/s0960-9822(02)00809-6

Streit, S., Michalski, C. W., Erkan, M., Kleeff, J., & Friess, H. (2008). Northern blot analysis for detection and quantification of RNA in pancreatic cancer cells and tissues. Nature Protocols, 4(1), 37-43. doi:10.1038/nprot.2008.216

Graybill, R. M., & Bailey, R. C. (2015). Emerging Biosensing Approaches for microRNA Analysis. Analytical Chemistry, 88(1), 431-450. doi:10.1021/acs.analchem.5b04679

Seydack, M. (2005). Nanoparticle labels in immunosensing using optical detection methods. Biosensors and Bioelectronics, 20(12), 2454-2469. doi:10.1016/j.bios.2004.11.003

Hempen, C., & Karst, U. (2005). Labeling strategies for bioassays. Analytical and Bioanalytical Chemistry, 384(3), 572-583. doi:10.1007/s00216-005-3392-0

Schmidt, S., Flueckiger, J., Wu, W., Grist, S. M., Talebi Fard, S., Donzella, V., … Ratner, D. (2014). Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing. Biosensing and Nanomedicine VII. doi:10.1117/12.2062389

Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620(1-2), 8-26. doi:10.1016/j.aca.2008.05.022

Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025

Luchansky, M. S., & Bailey, R. C. (2011). High-Q Optical Sensors for Chemical and Biological Analysis. Analytical Chemistry, 84(2), 793-821. doi:10.1021/ac2029024

Qavi, A. J., & Bailey, R. C. (2010). Multiplexed Detection and Label-Free Quantitation of MicroRNAs Using Arrays of Silicon Photonic Microring Resonators. Angewandte Chemie International Edition, 49(27), 4608-4611. doi:10.1002/anie.201001712

Ramachandran, A., Wang, S., Clarke, J., Ja, S. J., Goad, D., Wald, L., … Little, B. E. (2008). A universal biosensing platform based on optical micro-ring resonators. Biosensors and Bioelectronics, 23(7), 939-944. doi:10.1016/j.bios.2007.09.007

Qavi, A. J., Kindt, J. T., Gleeson, M. A., & Bailey, R. C. (2011). Anti-DNA:RNA Antibodies and Silicon Photonic Microring Resonators: Increased Sensitivity for Multiplexed microRNA Detection. Analytical Chemistry, 83(15), 5949-5956. doi:10.1021/ac201340s

Hu, S., Zhao, Y., Qin, K., Retterer, S. T., Kravchenko, I. I., & Weiss, S. M. (2014). Enhancing the Sensitivity of Label-Free Silicon Photonic Biosensors through Increased Probe Molecule Density. ACS Photonics, 1(7), 590-597. doi:10.1021/ph500075g

Toccafondo, V., García-Rupérez, J., Bañuls, M. J., Griol, A., Castelló, J. G., Peransi-Llopis, S., & Maquieira, A. (2010). Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor. Optics Letters, 35(21), 3673. doi:10.1364/ol.35.003673

Sepúlveda, B., Río, J. S. del, Moreno, M., Blanco, F. J., Mayora, K., Domínguez, C., & Lechuga, L. M. (2006). Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices. Journal of Optics A: Pure and Applied Optics, 8(7), S561-S566. doi:10.1088/1464-4258/8/7/s41

Qin, K., Hu, S., Retterer, S. T., Kravchenko, I. I., & Weiss, S. M. (2016). Slow light Mach–Zehnder interferometer as label-free biosensor with scalable sensitivity. Optics Letters, 41(4), 753. doi:10.1364/ol.41.000753

Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162

Nunes, P. S., Mortensen, N. A., Kutter, J. P., & Mogensen, K. B. (2010). Refractive Index Sensor Based on a 1D Photonic Crystal in a Microfluidic Channel. Sensors, 10(3), 2348-2358. doi:10.3390/s100302348

Dutta, H. S., & Pal, S. (2013). Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Optical and Quantum Electronics, 45(9), 907-917. doi:10.1007/s11082-013-9697-x

Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145

Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146

Wang, K., Tang, Z., Yang, C. J., Kim, Y., Fang, X., Li, W., … Tan, W. (2009). Molecular Engineering of DNA: Molecular Beacons. Angewandte Chemie International Edition, 48(5), 856-870. doi:10.1002/anie.200800370

Zheng, J., Yang, R., Shi, M., Wu, C., Fang, X., Li, Y., … Tan, W. (2015). Rationally designed molecular beacons for bioanalytical and biomedical applications. Chemical Society Reviews, 44(10), 3036-3055. doi:10.1039/c5cs00020c

Tyagi, S., & Kramer, F. R. (1996). Molecular Beacons: Probes that Fluoresce upon Hybridization. Nature Biotechnology, 14(3), 303-308. doi:10.1038/nbt0396-303

Guo, Q., Bai, Z., Liu, Y., & Sun, Q. (2016). A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms. Biosensors and Bioelectronics, 77, 107-110. doi:10.1016/j.bios.2015.09.031

Mei, Z., & Tang, L. (2016). Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis. Analytical Chemistry, 89(1), 633-639. doi:10.1021/acs.analchem.6b02797

Li, S., Wang, Y., Gao, C., Ge, S., Yu, J., & Yan, M. (2015). «Signal-off» photoelectrochemical DNA sensing strategy based on target dependent DNA probe conformational conversion using CdS quantum dots sensitized TiO2 nanorods array as photoactive material. Journal of Electroanalytical Chemistry, 759, 38-45. doi:10.1016/j.jelechem.2015.06.007

Su, Q., Wesner, D., Schönherr, H., & Nöll, G. (2014). Molecular Beacon Modified Sensor Chips for Oligonucleotide Detection with Optical Readout. Langmuir, 30(47), 14360-14367. doi:10.1021/la504105x

González-Lucas, D., Bañuls, M.-J., García-Rupérez, J., & Maquieira, Á. (2017). Covalent attachment of biotinylated molecular beacons via thiol-ene coupling. A study on conformational changes upon hybridization and streptavidin binding. Microchimica Acta, 184(9), 3231-3238. doi:10.1007/s00604-017-2310-4

Morton, T. A., Myszka, D. G., & Chaiken, I. M. (1995). Interpreting Complex Binding Kinetics from Optical Biosensors: A Comparison of Analysis by Linearization, the Integrated Rate Equation, and Numerical Integration. Analytical Biochemistry, 227(1), 176-185. doi:10.1006/abio.1995.1268

Srisa-Art, M., Dyson, E. C., deMello, A. J., & Edel, J. B. (2008). Monitoring of Real-Time Streptavidin−Biotin Binding Kinetics Using Droplet Microfluidics. Analytical Chemistry, 80(18), 7063-7067. doi:10.1021/ac801199k

Erickson, D., Li, D., & Krull, U. J. (2003). Modeling of DNA hybridization kinetics for spatially resolved biochips. Analytical Biochemistry, 317(2), 186-200. doi:10.1016/s0003-2697(03)00090-3

Scheler, O., Kindt, J. T., Qavi, A. J., Kaplinski, L., Glynn, B., Barry, T., … Bailey, R. C. (2012). Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators. Biosensors and Bioelectronics, 36(1), 56-61. doi:10.1016/j.bios.2012.03.037

[-]

This item appears in the following Collection(s)

Show full item record