Mostrar el registro sencillo del ítem
dc.contributor.author | Ruiz-Tórtola, Ángela | es_ES |
dc.contributor.author | Prats-Quílez, Francisco | es_ES |
dc.contributor.author | Gonzalez-Lucas, Daniel | es_ES |
dc.contributor.author | Bañuls Polo, María-José | es_ES |
dc.contributor.author | Maquieira Catala, Ángel | es_ES |
dc.contributor.author | Wheeler, Guy | es_ES |
dc.contributor.author | Dalmay, Tamas | es_ES |
dc.contributor.author | Griol Barres, Amadeu | es_ES |
dc.contributor.author | Hurtado Montañés, Juan | es_ES |
dc.contributor.author | García-Rupérez, Jaime | es_ES |
dc.date.accessioned | 2018-05-06T04:15:52Z | |
dc.date.available | 2018-05-06T04:15:52Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/101449 | |
dc.description.abstract | [EN] A label-free sensor, based on the combination of silicon photonic bandgap (PBG) structures with immobilized molecular beacon (MB) probes, is experimentally developed. Complementary target oligonucleotides are specifically recognized through hybridization with the MB probes on the surface of the sensing structure. This combination of PBG sensing structures and MB probes demonstrates an extremely high sensitivity without the need for complex PCR-based amplification or labelling methods. | es_ES |
dc.description.sponsorship | European Commission through the Horizon 2020 Program (ICT-644242 SAPHELY project). | |
dc.language | Inglés | es_ES |
dc.publisher | Optical Society of America | es_ES |
dc.relation.ispartof | Biomedical Optics Express | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Mach-zehnder interferometer | es_ES |
dc.subject | Microring resonators | es_ES |
dc.subject | Multiplexed detection | es_ES |
dc.subject | Optical biosensors | es_ES |
dc.subject | Binding-kinetics | es_ES |
dc.subject | Hybridization | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1364/BOE.9.001717 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/644242/EU/Self-amplified photonic biosensing platform for microRNA-based early diagnosis of diseases/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Ruiz-Tórtola, Á.; Prats-Quílez, F.; Gonzalez-Lucas, D.; Bañuls Polo, M.; Maquieira Catala, Á.; Wheeler, G.; Dalmay, T.... (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express. 9(4):1717-1727. https://doi.org/10.1364/BOE.9.001717 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1364/BOE.9.001717 | es_ES |
dc.description.upvformatpinicio | 1717 | es_ES |
dc.description.upvformatpfin | 1727 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2156-7085 | es_ES |
dc.identifier.pmid | 29675313 | en_EN |
dc.identifier.pmcid | PMC5905917 | en_EN |
dc.relation.pasarela | S\355501 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5(7), 522-531. doi:10.1038/nrg1379 | es_ES |
dc.description.references | Gutierrez-Arcelus, M., Ongen, H., Lappalainen, T., Montgomery, S. B., Buil, A., Yurovsky, A., … Dermitzakis, E. T. (2015). Tissue-Specific Effects of Genetic and Epigenetic Variation on Gene Regulation and Splicing. PLOS Genetics, 11(1), e1004958. doi:10.1371/journal.pgen.1004958 | es_ES |
dc.description.references | Debernardi, S., Skoulakis, S., Molloy, G., Chaplin, T., Dixon-McIver, A., & Young, B. D. (2007). MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia, 21(5), 912-916. doi:10.1038/sj.leu.2404605 | es_ES |
dc.description.references | Maute, R. L., Schneider, C., Sumazin, P., Holmes, A., Califano, A., Basso, K., & Dalla-Favera, R. (2013). tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proceedings of the National Academy of Sciences, 110(4), 1404-1409. doi:10.1073/pnas.1206761110 | es_ES |
dc.description.references | Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., … Johnson, J. M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027), 769-773. doi:10.1038/nature03315 | es_ES |
dc.description.references | Dunne, J., Cullmann, C., Ritter, M., Soria, N. M., Drescher, B., Debernardi, S., … Heidenreich, O. (2006). siRNA-mediated AML1/MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts. Oncogene, 25(45), 6067-6078. doi:10.1038/sj.onc.1209638 | es_ES |
dc.description.references | Lin, C.-H., Jackson, A. L., Guo, J., Linsley, P. S., & Eisenman, R. N. (2009). Myc-regulated microRNAs attenuate embryonic stem cell differentiation. The EMBO Journal, 28(20), 3157-3170. doi:10.1038/emboj.2009.254 | es_ES |
dc.description.references | Rideout, E. J., Marshall, L., & Grewal, S. S. (2012). Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. Proceedings of the National Academy of Sciences, 109(4), 1139-1144. doi:10.1073/pnas.1113311109 | es_ES |
dc.description.references | Hornstein, E., Mansfield, J. H., Yekta, S., Hu, J. K.-H., Harfe, B. D., McManus, M. T., … Tabin, C. J. (2005). The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature, 438(7068), 671-674. doi:10.1038/nature04138 | es_ES |
dc.description.references | Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., & Greenberg, M. E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283-289. doi:10.1038/nature04367 | es_ES |
dc.description.references | Poethig, R. S. (2009). Small RNAs and developmental timing in plants. Current Opinion in Genetics & Development, 19(4), 374-378. doi:10.1016/j.gde.2009.06.001 | es_ES |
dc.description.references | Fineberg, S. K., Kosik, K. S., & Davidson, B. L. (2009). MicroRNAs Potentiate Neural Development. Neuron, 64(3), 303-309. doi:10.1016/j.neuron.2009.10.020 | es_ES |
dc.description.references | Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 Is an Antiapoptotic Factor in Human Glioblastoma Cells. Cancer Research, 65(14), 6029-6033. doi:10.1158/0008-5472.can-05-0137 | es_ES |
dc.description.references | Saberi, M., Bjelica, D., Schenk, S., Imamura, T., Bandyopadhyay, G., Li, P., … Olefsky, J. M. (2009). Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes. American Journal of Physiology-Endocrinology and Metabolism, 297(5), E1137-E1146. doi:10.1152/ajpendo.00158.2009 | es_ES |
dc.description.references | Walker, M. D. (2008). Role of MicroRNA in Pancreatic -Cells: Where More Is Less. Diabetes, 57(10), 2567-2568. doi:10.2337/db08-0934 | es_ES |
dc.description.references | Muhonen, P., & Holthofer, H. (2008). Epigenetic and microRNA-mediated regulation in diabetes. Nephrology Dialysis Transplantation, 24(4), 1088-1096. doi:10.1093/ndt/gfn728 | es_ES |
dc.description.references | Liu, E. Y., Cali, C. P., & Lee, E. B. (2017). RNA metabolism in neurodegenerative disease. Disease Models & Mechanisms, 10(5), 509-518. doi:10.1242/dmm.028613 | es_ES |
dc.description.references | Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., … Hammond, S. M. (2007). microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, 8(2), R27. doi:10.1186/gb-2007-8-2-r27 | es_ES |
dc.description.references | Lee, J. W., Beebe, K., Nangle, L. A., Jang, J., Longo-Guess, C. M., Cook, S. A., … Ackerman, S. L. (2006). Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature, 443(7107), 50-55. doi:10.1038/nature05096 | es_ES |
dc.description.references | Goodarzi, H., Liu, X., Nguyen, H. C. B., Zhang, S., Fish, L., & Tavazoie, S. F. (2015). Endogenous tRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement. Cell, 161(4), 790-802. doi:10.1016/j.cell.2015.02.053 | es_ES |
dc.description.references | Judge, A. D., Robbins, M., Tavakoli, I., Levi, J., Hu, L., Fronda, A., … MacLachlan, I. (2009). Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. Journal of Clinical Investigation, 119(3), 661-673. doi:10.1172/jci37515 | es_ES |
dc.description.references | Lodes, M. J., Caraballo, M., Suciu, D., Munro, S., Kumar, A., & Anderson, B. (2009). Detection of Cancer with Serum miRNAs on an Oligonucleotide Microarray. PLoS ONE, 4(7), e6229. doi:10.1371/journal.pone.0006229 | es_ES |
dc.description.references | Casanova-Salas, I., Rubio-Briones, J., Fernández-Serra, A., & López-Guerrero, J. A. (2012). miRNAs as biomarkers in prostate cancer. Clinical and Translational Oncology, 14(11), 803-811. doi:10.1007/s12094-012-0877-0 | es_ES |
dc.description.references | Várallyay, É., Burgyán, J., & Havelda, Z. (2008). MicroRNA detection by northern blotting using locked nucleic acid probes. Nature Protocols, 3(2), 190-196. doi:10.1038/nprot.2007.528 | es_ES |
dc.description.references | Benes, V., & Castoldi, M. (2010). Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods, 50(4), 244-249. doi:10.1016/j.ymeth.2010.01.026 | es_ES |
dc.description.references | Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of Tissue-Specific MicroRNAs from Mouse. Current Biology, 12(9), 735-739. doi:10.1016/s0960-9822(02)00809-6 | es_ES |
dc.description.references | Streit, S., Michalski, C. W., Erkan, M., Kleeff, J., & Friess, H. (2008). Northern blot analysis for detection and quantification of RNA in pancreatic cancer cells and tissues. Nature Protocols, 4(1), 37-43. doi:10.1038/nprot.2008.216 | es_ES |
dc.description.references | Graybill, R. M., & Bailey, R. C. (2015). Emerging Biosensing Approaches for microRNA Analysis. Analytical Chemistry, 88(1), 431-450. doi:10.1021/acs.analchem.5b04679 | es_ES |
dc.description.references | Seydack, M. (2005). Nanoparticle labels in immunosensing using optical detection methods. Biosensors and Bioelectronics, 20(12), 2454-2469. doi:10.1016/j.bios.2004.11.003 | es_ES |
dc.description.references | Hempen, C., & Karst, U. (2005). Labeling strategies for bioassays. Analytical and Bioanalytical Chemistry, 384(3), 572-583. doi:10.1007/s00216-005-3392-0 | es_ES |
dc.description.references | Schmidt, S., Flueckiger, J., Wu, W., Grist, S. M., Talebi Fard, S., Donzella, V., … Ratner, D. (2014). Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing. Biosensing and Nanomedicine VII. doi:10.1117/12.2062389 | es_ES |
dc.description.references | Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620(1-2), 8-26. doi:10.1016/j.aca.2008.05.022 | es_ES |
dc.description.references | Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025 | es_ES |
dc.description.references | Luchansky, M. S., & Bailey, R. C. (2011). High-Q Optical Sensors for Chemical and Biological Analysis. Analytical Chemistry, 84(2), 793-821. doi:10.1021/ac2029024 | es_ES |
dc.description.references | Qavi, A. J., & Bailey, R. C. (2010). Multiplexed Detection and Label-Free Quantitation of MicroRNAs Using Arrays of Silicon Photonic Microring Resonators. Angewandte Chemie International Edition, 49(27), 4608-4611. doi:10.1002/anie.201001712 | es_ES |
dc.description.references | Ramachandran, A., Wang, S., Clarke, J., Ja, S. J., Goad, D., Wald, L., … Little, B. E. (2008). A universal biosensing platform based on optical micro-ring resonators. Biosensors and Bioelectronics, 23(7), 939-944. doi:10.1016/j.bios.2007.09.007 | es_ES |
dc.description.references | Qavi, A. J., Kindt, J. T., Gleeson, M. A., & Bailey, R. C. (2011). Anti-DNA:RNA Antibodies and Silicon Photonic Microring Resonators: Increased Sensitivity for Multiplexed microRNA Detection. Analytical Chemistry, 83(15), 5949-5956. doi:10.1021/ac201340s | es_ES |
dc.description.references | Hu, S., Zhao, Y., Qin, K., Retterer, S. T., Kravchenko, I. I., & Weiss, S. M. (2014). Enhancing the Sensitivity of Label-Free Silicon Photonic Biosensors through Increased Probe Molecule Density. ACS Photonics, 1(7), 590-597. doi:10.1021/ph500075g | es_ES |
dc.description.references | Toccafondo, V., García-Rupérez, J., Bañuls, M. J., Griol, A., Castelló, J. G., Peransi-Llopis, S., & Maquieira, A. (2010). Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor. Optics Letters, 35(21), 3673. doi:10.1364/ol.35.003673 | es_ES |
dc.description.references | Sepúlveda, B., Río, J. S. del, Moreno, M., Blanco, F. J., Mayora, K., Domínguez, C., & Lechuga, L. M. (2006). Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices. Journal of Optics A: Pure and Applied Optics, 8(7), S561-S566. doi:10.1088/1464-4258/8/7/s41 | es_ES |
dc.description.references | Qin, K., Hu, S., Retterer, S. T., Kravchenko, I. I., & Weiss, S. M. (2016). Slow light Mach–Zehnder interferometer as label-free biosensor with scalable sensitivity. Optics Letters, 41(4), 753. doi:10.1364/ol.41.000753 | es_ES |
dc.description.references | Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162 | es_ES |
dc.description.references | Nunes, P. S., Mortensen, N. A., Kutter, J. P., & Mogensen, K. B. (2010). Refractive Index Sensor Based on a 1D Photonic Crystal in a Microfluidic Channel. Sensors, 10(3), 2348-2358. doi:10.3390/s100302348 | es_ES |
dc.description.references | Dutta, H. S., & Pal, S. (2013). Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Optical and Quantum Electronics, 45(9), 907-917. doi:10.1007/s11082-013-9697-x | es_ES |
dc.description.references | Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145 | es_ES |
dc.description.references | Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146 | es_ES |
dc.description.references | Wang, K., Tang, Z., Yang, C. J., Kim, Y., Fang, X., Li, W., … Tan, W. (2009). Molecular Engineering of DNA: Molecular Beacons. Angewandte Chemie International Edition, 48(5), 856-870. doi:10.1002/anie.200800370 | es_ES |
dc.description.references | Zheng, J., Yang, R., Shi, M., Wu, C., Fang, X., Li, Y., … Tan, W. (2015). Rationally designed molecular beacons for bioanalytical and biomedical applications. Chemical Society Reviews, 44(10), 3036-3055. doi:10.1039/c5cs00020c | es_ES |
dc.description.references | Tyagi, S., & Kramer, F. R. (1996). Molecular Beacons: Probes that Fluoresce upon Hybridization. Nature Biotechnology, 14(3), 303-308. doi:10.1038/nbt0396-303 | es_ES |
dc.description.references | Guo, Q., Bai, Z., Liu, Y., & Sun, Q. (2016). A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms. Biosensors and Bioelectronics, 77, 107-110. doi:10.1016/j.bios.2015.09.031 | es_ES |
dc.description.references | Mei, Z., & Tang, L. (2016). Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis. Analytical Chemistry, 89(1), 633-639. doi:10.1021/acs.analchem.6b02797 | es_ES |
dc.description.references | Li, S., Wang, Y., Gao, C., Ge, S., Yu, J., & Yan, M. (2015). «Signal-off» photoelectrochemical DNA sensing strategy based on target dependent DNA probe conformational conversion using CdS quantum dots sensitized TiO2 nanorods array as photoactive material. Journal of Electroanalytical Chemistry, 759, 38-45. doi:10.1016/j.jelechem.2015.06.007 | es_ES |
dc.description.references | Su, Q., Wesner, D., Schönherr, H., & Nöll, G. (2014). Molecular Beacon Modified Sensor Chips for Oligonucleotide Detection with Optical Readout. Langmuir, 30(47), 14360-14367. doi:10.1021/la504105x | es_ES |
dc.description.references | González-Lucas, D., Bañuls, M.-J., García-Rupérez, J., & Maquieira, Á. (2017). Covalent attachment of biotinylated molecular beacons via thiol-ene coupling. A study on conformational changes upon hybridization and streptavidin binding. Microchimica Acta, 184(9), 3231-3238. doi:10.1007/s00604-017-2310-4 | es_ES |
dc.description.references | Morton, T. A., Myszka, D. G., & Chaiken, I. M. (1995). Interpreting Complex Binding Kinetics from Optical Biosensors: A Comparison of Analysis by Linearization, the Integrated Rate Equation, and Numerical Integration. Analytical Biochemistry, 227(1), 176-185. doi:10.1006/abio.1995.1268 | es_ES |
dc.description.references | Srisa-Art, M., Dyson, E. C., deMello, A. J., & Edel, J. B. (2008). Monitoring of Real-Time Streptavidin−Biotin Binding Kinetics Using Droplet Microfluidics. Analytical Chemistry, 80(18), 7063-7067. doi:10.1021/ac801199k | es_ES |
dc.description.references | Erickson, D., Li, D., & Krull, U. J. (2003). Modeling of DNA hybridization kinetics for spatially resolved biochips. Analytical Biochemistry, 317(2), 186-200. doi:10.1016/s0003-2697(03)00090-3 | es_ES |
dc.description.references | Scheler, O., Kindt, J. T., Qavi, A. J., Kaplinski, L., Glynn, B., Barry, T., … Bailey, R. C. (2012). Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators. Biosensors and Bioelectronics, 36(1), 56-61. doi:10.1016/j.bios.2012.03.037 | es_ES |