- -

High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz-Tórtola, Ángela es_ES
dc.contributor.author Prats-Quílez, Francisco es_ES
dc.contributor.author Gonzalez-Lucas, Daniel es_ES
dc.contributor.author Bañuls Polo, María-José es_ES
dc.contributor.author Maquieira Catala, Ángel es_ES
dc.contributor.author Wheeler, Guy es_ES
dc.contributor.author Dalmay, Tamas es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Hurtado Montañés, Juan es_ES
dc.contributor.author García-Rupérez, Jaime es_ES
dc.date.accessioned 2018-05-06T04:15:52Z
dc.date.available 2018-05-06T04:15:52Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101449
dc.description.abstract [EN] A label-free sensor, based on the combination of silicon photonic bandgap (PBG) structures with immobilized molecular beacon (MB) probes, is experimentally developed. Complementary target oligonucleotides are specifically recognized through hybridization with the MB probes on the surface of the sensing structure. This combination of PBG sensing structures and MB probes demonstrates an extremely high sensitivity without the need for complex PCR-based amplification or labelling methods. es_ES
dc.description.sponsorship European Commission through the Horizon 2020 Program (ICT-644242 SAPHELY project).
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Biomedical Optics Express es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mach-zehnder interferometer es_ES
dc.subject Microring resonators es_ES
dc.subject Multiplexed detection es_ES
dc.subject Optical biosensors es_ES
dc.subject Binding-kinetics es_ES
dc.subject Hybridization es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/BOE.9.001717 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/644242/EU/Self-amplified photonic biosensing platform for microRNA-based early diagnosis of diseases/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Ruiz-Tórtola, Á.; Prats-Quílez, F.; Gonzalez-Lucas, D.; Bañuls Polo, M.; Maquieira Catala, Á.; Wheeler, G.; Dalmay, T.... (2018). High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes. Biomedical Optics Express. 9(4):1717-1727. https://doi.org/10.1364/BOE.9.001717 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/BOE.9.001717 es_ES
dc.description.upvformatpinicio 1717 es_ES
dc.description.upvformatpfin 1727 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2156-7085 es_ES
dc.identifier.pmid 29675313 en_EN
dc.identifier.pmcid PMC5905917 en_EN
dc.relation.pasarela S\355501 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references He, L., & Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 5(7), 522-531. doi:10.1038/nrg1379 es_ES
dc.description.references Gutierrez-Arcelus, M., Ongen, H., Lappalainen, T., Montgomery, S. B., Buil, A., Yurovsky, A., … Dermitzakis, E. T. (2015). Tissue-Specific Effects of Genetic and Epigenetic Variation on Gene Regulation and Splicing. PLOS Genetics, 11(1), e1004958. doi:10.1371/journal.pgen.1004958 es_ES
dc.description.references Debernardi, S., Skoulakis, S., Molloy, G., Chaplin, T., Dixon-McIver, A., & Young, B. D. (2007). MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia, 21(5), 912-916. doi:10.1038/sj.leu.2404605 es_ES
dc.description.references Maute, R. L., Schneider, C., Sumazin, P., Holmes, A., Califano, A., Basso, K., & Dalla-Favera, R. (2013). tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proceedings of the National Academy of Sciences, 110(4), 1404-1409. doi:10.1073/pnas.1206761110 es_ES
dc.description.references Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., … Johnson, J. M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433(7027), 769-773. doi:10.1038/nature03315 es_ES
dc.description.references Dunne, J., Cullmann, C., Ritter, M., Soria, N. M., Drescher, B., Debernardi, S., … Heidenreich, O. (2006). siRNA-mediated AML1/MTG8 depletion affects differentiation and proliferation-associated gene expression in t(8;21)-positive cell lines and primary AML blasts. Oncogene, 25(45), 6067-6078. doi:10.1038/sj.onc.1209638 es_ES
dc.description.references Lin, C.-H., Jackson, A. L., Guo, J., Linsley, P. S., & Eisenman, R. N. (2009). Myc-regulated microRNAs attenuate embryonic stem cell differentiation. The EMBO Journal, 28(20), 3157-3170. doi:10.1038/emboj.2009.254 es_ES
dc.description.references Rideout, E. J., Marshall, L., & Grewal, S. S. (2012). Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. Proceedings of the National Academy of Sciences, 109(4), 1139-1144. doi:10.1073/pnas.1113311109 es_ES
dc.description.references Hornstein, E., Mansfield, J. H., Yekta, S., Hu, J. K.-H., Harfe, B. D., McManus, M. T., … Tabin, C. J. (2005). The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature, 438(7068), 671-674. doi:10.1038/nature04138 es_ES
dc.description.references Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., & Greenberg, M. E. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283-289. doi:10.1038/nature04367 es_ES
dc.description.references Poethig, R. S. (2009). Small RNAs and developmental timing in plants. Current Opinion in Genetics & Development, 19(4), 374-378. doi:10.1016/j.gde.2009.06.001 es_ES
dc.description.references Fineberg, S. K., Kosik, K. S., & Davidson, B. L. (2009). MicroRNAs Potentiate Neural Development. Neuron, 64(3), 303-309. doi:10.1016/j.neuron.2009.10.020 es_ES
dc.description.references Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 Is an Antiapoptotic Factor in Human Glioblastoma Cells. Cancer Research, 65(14), 6029-6033. doi:10.1158/0008-5472.can-05-0137 es_ES
dc.description.references Saberi, M., Bjelica, D., Schenk, S., Imamura, T., Bandyopadhyay, G., Li, P., … Olefsky, J. M. (2009). Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes. American Journal of Physiology-Endocrinology and Metabolism, 297(5), E1137-E1146. doi:10.1152/ajpendo.00158.2009 es_ES
dc.description.references Walker, M. D. (2008). Role of MicroRNA in Pancreatic  -Cells: Where More Is Less. Diabetes, 57(10), 2567-2568. doi:10.2337/db08-0934 es_ES
dc.description.references Muhonen, P., & Holthofer, H. (2008). Epigenetic and microRNA-mediated regulation in diabetes. Nephrology Dialysis Transplantation, 24(4), 1088-1096. doi:10.1093/ndt/gfn728 es_ES
dc.description.references Liu, E. Y., Cali, C. P., & Lee, E. B. (2017). RNA metabolism in neurodegenerative disease. Disease Models & Mechanisms, 10(5), 509-518. doi:10.1242/dmm.028613 es_ES
dc.description.references Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., … Hammond, S. M. (2007). microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, 8(2), R27. doi:10.1186/gb-2007-8-2-r27 es_ES
dc.description.references Lee, J. W., Beebe, K., Nangle, L. A., Jang, J., Longo-Guess, C. M., Cook, S. A., … Ackerman, S. L. (2006). Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature, 443(7107), 50-55. doi:10.1038/nature05096 es_ES
dc.description.references Goodarzi, H., Liu, X., Nguyen, H. C. B., Zhang, S., Fish, L., & Tavazoie, S. F. (2015). Endogenous tRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement. Cell, 161(4), 790-802. doi:10.1016/j.cell.2015.02.053 es_ES
dc.description.references Judge, A. D., Robbins, M., Tavakoli, I., Levi, J., Hu, L., Fronda, A., … MacLachlan, I. (2009). Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. Journal of Clinical Investigation, 119(3), 661-673. doi:10.1172/jci37515 es_ES
dc.description.references Lodes, M. J., Caraballo, M., Suciu, D., Munro, S., Kumar, A., & Anderson, B. (2009). Detection of Cancer with Serum miRNAs on an Oligonucleotide Microarray. PLoS ONE, 4(7), e6229. doi:10.1371/journal.pone.0006229 es_ES
dc.description.references Casanova-Salas, I., Rubio-Briones, J., Fernández-Serra, A., & López-Guerrero, J. A. (2012). miRNAs as biomarkers in prostate cancer. Clinical and Translational Oncology, 14(11), 803-811. doi:10.1007/s12094-012-0877-0 es_ES
dc.description.references Várallyay, É., Burgyán, J., & Havelda, Z. (2008). MicroRNA detection by northern blotting using locked nucleic acid probes. Nature Protocols, 3(2), 190-196. doi:10.1038/nprot.2007.528 es_ES
dc.description.references Benes, V., & Castoldi, M. (2010). Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods, 50(4), 244-249. doi:10.1016/j.ymeth.2010.01.026 es_ES
dc.description.references Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of Tissue-Specific MicroRNAs from Mouse. Current Biology, 12(9), 735-739. doi:10.1016/s0960-9822(02)00809-6 es_ES
dc.description.references Streit, S., Michalski, C. W., Erkan, M., Kleeff, J., & Friess, H. (2008). Northern blot analysis for detection and quantification of RNA in pancreatic cancer cells and tissues. Nature Protocols, 4(1), 37-43. doi:10.1038/nprot.2008.216 es_ES
dc.description.references Graybill, R. M., & Bailey, R. C. (2015). Emerging Biosensing Approaches for microRNA Analysis. Analytical Chemistry, 88(1), 431-450. doi:10.1021/acs.analchem.5b04679 es_ES
dc.description.references Seydack, M. (2005). Nanoparticle labels in immunosensing using optical detection methods. Biosensors and Bioelectronics, 20(12), 2454-2469. doi:10.1016/j.bios.2004.11.003 es_ES
dc.description.references Hempen, C., & Karst, U. (2005). Labeling strategies for bioassays. Analytical and Bioanalytical Chemistry, 384(3), 572-583. doi:10.1007/s00216-005-3392-0 es_ES
dc.description.references Schmidt, S., Flueckiger, J., Wu, W., Grist, S. M., Talebi Fard, S., Donzella, V., … Ratner, D. (2014). Improving the performance of silicon photonic rings, disks, and Bragg gratings for use in label-free biosensing. Biosensing and Nanomedicine VII. doi:10.1117/12.2062389 es_ES
dc.description.references Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive optical biosensors for unlabeled targets: A review. Analytica Chimica Acta, 620(1-2), 8-26. doi:10.1016/j.aca.2008.05.022 es_ES
dc.description.references Estevez, M. C., Alvarez, M., & Lechuga, L. M. (2011). Integrated optical devices for lab-on-a-chip biosensing applications. Laser & Photonics Reviews, 6(4), 463-487. doi:10.1002/lpor.201100025 es_ES
dc.description.references Luchansky, M. S., & Bailey, R. C. (2011). High-Q Optical Sensors for Chemical and Biological Analysis. Analytical Chemistry, 84(2), 793-821. doi:10.1021/ac2029024 es_ES
dc.description.references Qavi, A. J., & Bailey, R. C. (2010). Multiplexed Detection and Label-Free Quantitation of MicroRNAs Using Arrays of Silicon Photonic Microring Resonators. Angewandte Chemie International Edition, 49(27), 4608-4611. doi:10.1002/anie.201001712 es_ES
dc.description.references Ramachandran, A., Wang, S., Clarke, J., Ja, S. J., Goad, D., Wald, L., … Little, B. E. (2008). A universal biosensing platform based on optical micro-ring resonators. Biosensors and Bioelectronics, 23(7), 939-944. doi:10.1016/j.bios.2007.09.007 es_ES
dc.description.references Qavi, A. J., Kindt, J. T., Gleeson, M. A., & Bailey, R. C. (2011). Anti-DNA:RNA Antibodies and Silicon Photonic Microring Resonators: Increased Sensitivity for Multiplexed microRNA Detection. Analytical Chemistry, 83(15), 5949-5956. doi:10.1021/ac201340s es_ES
dc.description.references Hu, S., Zhao, Y., Qin, K., Retterer, S. T., Kravchenko, I. I., & Weiss, S. M. (2014). Enhancing the Sensitivity of Label-Free Silicon Photonic Biosensors through Increased Probe Molecule Density. ACS Photonics, 1(7), 590-597. doi:10.1021/ph500075g es_ES
dc.description.references Toccafondo, V., García-Rupérez, J., Bañuls, M. J., Griol, A., Castelló, J. G., Peransi-Llopis, S., & Maquieira, A. (2010). Single-strand DNA detection using a planar photonic-crystal-waveguide-based sensor. Optics Letters, 35(21), 3673. doi:10.1364/ol.35.003673 es_ES
dc.description.references Sepúlveda, B., Río, J. S. del, Moreno, M., Blanco, F. J., Mayora, K., Domínguez, C., & Lechuga, L. M. (2006). Optical biosensor microsystems based on the integration of highly sensitive Mach–Zehnder interferometer devices. Journal of Optics A: Pure and Applied Optics, 8(7), S561-S566. doi:10.1088/1464-4258/8/7/s41 es_ES
dc.description.references Qin, K., Hu, S., Retterer, S. T., Kravchenko, I. I., & Weiss, S. M. (2016). Slow light Mach–Zehnder interferometer as label-free biosensor with scalable sensitivity. Optics Letters, 41(4), 753. doi:10.1364/ol.41.000753 es_ES
dc.description.references Huertas, C. S., Fariña, D., & Lechuga, L. M. (2016). Direct and Label-Free Quantification of Micro-RNA-181a at Attomolar Level in Complex Media Using a Nanophotonic Biosensor. ACS Sensors, 1(6), 748-756. doi:10.1021/acssensors.6b00162 es_ES
dc.description.references Nunes, P. S., Mortensen, N. A., Kutter, J. P., & Mogensen, K. B. (2010). Refractive Index Sensor Based on a 1D Photonic Crystal in a Microfluidic Channel. Sensors, 10(3), 2348-2358. doi:10.3390/s100302348 es_ES
dc.description.references Dutta, H. S., & Pal, S. (2013). Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing. Optical and Quantum Electronics, 45(9), 907-917. doi:10.1007/s11082-013-9697-x es_ES
dc.description.references Povinelli, M. L., Johnson, S. G., & Joannopoulos, J. D. (2005). Slow-light, band-edge waveguides for tunable time delays. Optics Express, 13(18), 7145. doi:10.1364/opex.13.007145 es_ES
dc.description.references Garcia, J., Sanchis, P., Martinez, A., & Marti, J. (2008). 1D periodic structures for slow-wave induced non-linearity enhancement. Optics Express, 16(5), 3146. doi:10.1364/oe.16.003146 es_ES
dc.description.references Wang, K., Tang, Z., Yang, C. J., Kim, Y., Fang, X., Li, W., … Tan, W. (2009). Molecular Engineering of DNA: Molecular Beacons. Angewandte Chemie International Edition, 48(5), 856-870. doi:10.1002/anie.200800370 es_ES
dc.description.references Zheng, J., Yang, R., Shi, M., Wu, C., Fang, X., Li, Y., … Tan, W. (2015). Rationally designed molecular beacons for bioanalytical and biomedical applications. Chemical Society Reviews, 44(10), 3036-3055. doi:10.1039/c5cs00020c es_ES
dc.description.references Tyagi, S., & Kramer, F. R. (1996). Molecular Beacons: Probes that Fluoresce upon Hybridization. Nature Biotechnology, 14(3), 303-308. doi:10.1038/nbt0396-303 es_ES
dc.description.references Guo, Q., Bai, Z., Liu, Y., & Sun, Q. (2016). A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms. Biosensors and Bioelectronics, 77, 107-110. doi:10.1016/j.bios.2015.09.031 es_ES
dc.description.references Mei, Z., & Tang, L. (2016). Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis. Analytical Chemistry, 89(1), 633-639. doi:10.1021/acs.analchem.6b02797 es_ES
dc.description.references Li, S., Wang, Y., Gao, C., Ge, S., Yu, J., & Yan, M. (2015). «Signal-off» photoelectrochemical DNA sensing strategy based on target dependent DNA probe conformational conversion using CdS quantum dots sensitized TiO2 nanorods array as photoactive material. Journal of Electroanalytical Chemistry, 759, 38-45. doi:10.1016/j.jelechem.2015.06.007 es_ES
dc.description.references Su, Q., Wesner, D., Schönherr, H., & Nöll, G. (2014). Molecular Beacon Modified Sensor Chips for Oligonucleotide Detection with Optical Readout. Langmuir, 30(47), 14360-14367. doi:10.1021/la504105x es_ES
dc.description.references González-Lucas, D., Bañuls, M.-J., García-Rupérez, J., & Maquieira, Á. (2017). Covalent attachment of biotinylated molecular beacons via thiol-ene coupling. A study on conformational changes upon hybridization and streptavidin binding. Microchimica Acta, 184(9), 3231-3238. doi:10.1007/s00604-017-2310-4 es_ES
dc.description.references Morton, T. A., Myszka, D. G., & Chaiken, I. M. (1995). Interpreting Complex Binding Kinetics from Optical Biosensors: A Comparison of Analysis by Linearization, the Integrated Rate Equation, and Numerical Integration. Analytical Biochemistry, 227(1), 176-185. doi:10.1006/abio.1995.1268 es_ES
dc.description.references Srisa-Art, M., Dyson, E. C., deMello, A. J., & Edel, J. B. (2008). Monitoring of Real-Time Streptavidin−Biotin Binding Kinetics Using Droplet Microfluidics. Analytical Chemistry, 80(18), 7063-7067. doi:10.1021/ac801199k es_ES
dc.description.references Erickson, D., Li, D., & Krull, U. J. (2003). Modeling of DNA hybridization kinetics for spatially resolved biochips. Analytical Biochemistry, 317(2), 186-200. doi:10.1016/s0003-2697(03)00090-3 es_ES
dc.description.references Scheler, O., Kindt, J. T., Qavi, A. J., Kaplinski, L., Glynn, B., Barry, T., … Bailey, R. C. (2012). Label-free, multiplexed detection of bacterial tmRNA using silicon photonic microring resonators. Biosensors and Bioelectronics, 36(1), 56-61. doi:10.1016/j.bios.2012.03.037 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem