- -

An analysis of the transient regime temperature field in wet grinding

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An analysis of the transient regime temperature field in wet grinding

Mostrar el registro completo del ítem

González-Santander Martínez, JL.; Isidro San Juan, JM.; Martín, G. (2015). An analysis of the transient regime temperature field in wet grinding. Journal of Engineering Mathematics. 90(1):141-171. doi:10.1007/s10665-014-9713-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/101835

Ficheros en el ítem

Metadatos del ítem

Título: An analysis of the transient regime temperature field in wet grinding
Autor: González-Santander Martínez, Juan Luis Isidro San Juan, José María Martín, G.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper, the Samara-Valencia model for heat transfer in grinding is considered. This model is particularized to the case of wet grinding, assuming a constant heat transfer coefficient on the workpiece surface ...[+]
Palabras clave: Heat transfer , Samara-Valencia model , Transient regime , Wet grinding
Derechos de uso: Cerrado
Fuente:
Journal of Engineering Mathematics. (issn: 0022-0833 )
DOI: 10.1007/s10665-014-9713-6
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s10665-014-9713-6
Tipo: Artículo

References

Malkin S (1989) Grinding technology: theory and application of machining with abrasives. Ellis Horwood Ltd, Wiley, New York

Carslaw H, Jaeger JC (1986) Conduction of heat in solids. Oxford Science Publications, Oxford

Guo C, Malkin S (1995) Analysis of energy partition in grinding. J Eng Ind 117:55–61 [+]
Malkin S (1989) Grinding technology: theory and application of machining with abrasives. Ellis Horwood Ltd, Wiley, New York

Carslaw H, Jaeger JC (1986) Conduction of heat in solids. Oxford Science Publications, Oxford

Guo C, Malkin S (1995) Analysis of energy partition in grinding. J Eng Ind 117:55–61

Malkin S, Anderson R (1974) Thermal aspects of grinding, part I: energy partition. J Manuf Sci Eng 96:1177–1183

Lavine A (1991) Thermal aspects of grinding: the effects of heat generation at the shear planes. Annals of CIRP 40:343–345

Lavine A (2000) An exact solution for surface temperature in down grinding. Int J Heat Mass Transf 43:4447–4456

Pérez J, Hoyas S, Skuratov D, Ratis Y, Selezneva I, Urchueguía J (2008) Heat transfer analysis of intermittent grinding processes. Int J Heat Mass Transf 51:4132–4138

Guo C, Malkin S (1995) Analysis of transient temperature in grinding. J Manuf Sci Eng 117:571–577

Skuratov D, Ratis Y, Selezneva I, Pérez J, Fernández de Córdoba P, Urchueguía J (2007) Mathematical modelling and analytical solution for workpiece temperature in grinding. Appl Math Model 31:1039–1047

González-Santander JL, Pérez J, Ferná ndez de Córdoba P, Isidro JM (2009) An analysis of the temperature field of the workpiece in dry continuous grinding. J Eng Math 67:165–174

Jaeger JC (1942) Moving sources of heat and the temperature at sliding contracts. Proc R Soc New South Wales 76:204–224

DesRuisseaux NR (1968) Thermal aspects of grinding processes, PhD dissertation, University of Cincinnati

DesRuisseaux NR, Zerkle RD (1970) Temperature in semi-infinite and cylindrical bodies subjected to moving heat surfaces and surface cooling. J Heat Transf 92:456–464

Abramowitz M, Stegun I (1972) Handbook of mathematical functions. National Bureau of Standards, Washington

Zhang LC, Suto T, Noguchi TH, Waida T (1992) An overview of applied mechanics in grinding. Manuf Rev 4:261–273

Mahdi M, Zhang L (1998) Applied mechanics in grinding-VI. Residual stresses and surface hardening by coupled thermo-plasticity and phase transformation. Int J Mach Tools Manuf 38:1289–1304

Zhang LC, Suto T, Noguchi H, Waida T (1993) Applied mechanics in grinding. Part II: modelling of elastic modulus of wheel and interface forces. Int J Mach Tools Manuf 33:245–255

Guo C, Wu Y, Varghese V, Malkin S (1999) Temperatures and energy partition for grinding with vitrified CBN wheels. Ann CIRP 42:247–250

Zarudi I, Zhang LC (2002) A revisit to some wheel-workpiece interaction problems in surface grinding. Int J Mach Tools Manuf 42:905–913

Lavine AS (1988) A simple model for convective cooling during the grinding process. J Eng Ind 110:1–6

González-Santander JL, Valdés Placeres JM, Isidro JM (2011) Exact solution for the time-dependent temperature field in dry grinding: application to segmental wheels. Math Probl Eng 2011: 927876, 1–28

Lebedev NN (1965) Special functions and their applications. Dover, New York

González-Santander JL (2009) Modelización matem ática de la transmisión de calor en el proceso del rectificado plano industrial, Ph. D. dissertation, Universidad Politécnica de Valencia

Oldham KB, Myland JC, Spanier J (2008) An atlas of functions, 2nd edn. Springer, New York

Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv Comput Math 5:329–359

Murav’ev VI, Yakimov AV, Chernysev AV (2003) Effect of deformation, welding, and electrocontact heating on the properties of titanium alloy VT20 in pressed and welded structures. Met Sci Heat Treat 45:419–422

Spiegel MR (1968) Mathematical handbook of formulas and tables. McGraw-Hill, New York

Gradsthteyn IS, Ryzhik IM (2007) Table of integrals, series and products. Academic Press Inc., New York

González-Santander JL, Martín G (2014) Closed form expression for the surface temperature in wet grinding: application to maximum temperature evaluation. J Eng Math. doi: 10.1007/s10665-014-9716-3

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem