Mostrar el registro sencillo del ítem
dc.contributor.author | González-Santander Martínez, Juan Luis | es_ES |
dc.contributor.author | Isidro San Juan, José María | es_ES |
dc.contributor.author | Martín, G. | es_ES |
dc.date.accessioned | 2018-05-13T04:20:32Z | |
dc.date.available | 2018-05-13T04:20:32Z | |
dc.date.issued | 2015 | es_ES |
dc.identifier.issn | 0022-0833 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/101835 | |
dc.description.abstract | [EN] In this paper, the Samara-Valencia model for heat transfer in grinding is considered. This model is particularized to the case of wet grinding, assuming a constant heat transfer coefficient on the workpiece surface and a constant heat flux profile entering into the workpiece, obtaining a solution for the temperature field in the transient regime. Performing the limit in this solution we get a formula analytically equivalent to the well-known solution given by DesRuisseaux for the steady-state temperature field. Also, we derive for the transient regime very simple formulas for relaxation times in wet and dry grinding. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Engineering Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Heat transfer | es_ES |
dc.subject | Samara-Valencia model | es_ES |
dc.subject | Transient regime | es_ES |
dc.subject | Wet grinding | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | An analysis of the transient regime temperature field in wet grinding | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10665-014-9713-6 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | González-Santander Martínez, JL.; Isidro San Juan, JM.; Martín, G. (2015). An analysis of the transient regime temperature field in wet grinding. Journal of Engineering Mathematics. 90(1):141-171. doi:10.1007/s10665-014-9713-6 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s10665-014-9713-6 | es_ES |
dc.description.upvformatpinicio | 141 | es_ES |
dc.description.upvformatpfin | 171 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 90 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\276377 | es_ES |
dc.description.references | Malkin S (1989) Grinding technology: theory and application of machining with abrasives. Ellis Horwood Ltd, Wiley, New York | es_ES |
dc.description.references | Carslaw H, Jaeger JC (1986) Conduction of heat in solids. Oxford Science Publications, Oxford | es_ES |
dc.description.references | Guo C, Malkin S (1995) Analysis of energy partition in grinding. J Eng Ind 117:55–61 | es_ES |
dc.description.references | Malkin S, Anderson R (1974) Thermal aspects of grinding, part I: energy partition. J Manuf Sci Eng 96:1177–1183 | es_ES |
dc.description.references | Lavine A (1991) Thermal aspects of grinding: the effects of heat generation at the shear planes. Annals of CIRP 40:343–345 | es_ES |
dc.description.references | Lavine A (2000) An exact solution for surface temperature in down grinding. Int J Heat Mass Transf 43:4447–4456 | es_ES |
dc.description.references | Pérez J, Hoyas S, Skuratov D, Ratis Y, Selezneva I, Urchueguía J (2008) Heat transfer analysis of intermittent grinding processes. Int J Heat Mass Transf 51:4132–4138 | es_ES |
dc.description.references | Guo C, Malkin S (1995) Analysis of transient temperature in grinding. J Manuf Sci Eng 117:571–577 | es_ES |
dc.description.references | Skuratov D, Ratis Y, Selezneva I, Pérez J, Fernández de Córdoba P, Urchueguía J (2007) Mathematical modelling and analytical solution for workpiece temperature in grinding. Appl Math Model 31:1039–1047 | es_ES |
dc.description.references | González-Santander JL, Pérez J, Ferná ndez de Córdoba P, Isidro JM (2009) An analysis of the temperature field of the workpiece in dry continuous grinding. J Eng Math 67:165–174 | es_ES |
dc.description.references | Jaeger JC (1942) Moving sources of heat and the temperature at sliding contracts. Proc R Soc New South Wales 76:204–224 | es_ES |
dc.description.references | DesRuisseaux NR (1968) Thermal aspects of grinding processes, PhD dissertation, University of Cincinnati | es_ES |
dc.description.references | DesRuisseaux NR, Zerkle RD (1970) Temperature in semi-infinite and cylindrical bodies subjected to moving heat surfaces and surface cooling. J Heat Transf 92:456–464 | es_ES |
dc.description.references | Abramowitz M, Stegun I (1972) Handbook of mathematical functions. National Bureau of Standards, Washington | es_ES |
dc.description.references | Zhang LC, Suto T, Noguchi TH, Waida T (1992) An overview of applied mechanics in grinding. Manuf Rev 4:261–273 | es_ES |
dc.description.references | Mahdi M, Zhang L (1998) Applied mechanics in grinding-VI. Residual stresses and surface hardening by coupled thermo-plasticity and phase transformation. Int J Mach Tools Manuf 38:1289–1304 | es_ES |
dc.description.references | Zhang LC, Suto T, Noguchi H, Waida T (1993) Applied mechanics in grinding. Part II: modelling of elastic modulus of wheel and interface forces. Int J Mach Tools Manuf 33:245–255 | es_ES |
dc.description.references | Guo C, Wu Y, Varghese V, Malkin S (1999) Temperatures and energy partition for grinding with vitrified CBN wheels. Ann CIRP 42:247–250 | es_ES |
dc.description.references | Zarudi I, Zhang LC (2002) A revisit to some wheel-workpiece interaction problems in surface grinding. Int J Mach Tools Manuf 42:905–913 | es_ES |
dc.description.references | Lavine AS (1988) A simple model for convective cooling during the grinding process. J Eng Ind 110:1–6 | es_ES |
dc.description.references | González-Santander JL, Valdés Placeres JM, Isidro JM (2011) Exact solution for the time-dependent temperature field in dry grinding: application to segmental wheels. Math Probl Eng 2011: 927876, 1–28 | es_ES |
dc.description.references | Lebedev NN (1965) Special functions and their applications. Dover, New York | es_ES |
dc.description.references | González-Santander JL (2009) Modelización matem ática de la transmisión de calor en el proceso del rectificado plano industrial, Ph. D. dissertation, Universidad Politécnica de Valencia | es_ES |
dc.description.references | Oldham KB, Myland JC, Spanier J (2008) An atlas of functions, 2nd edn. Springer, New York | es_ES |
dc.description.references | Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv Comput Math 5:329–359 | es_ES |
dc.description.references | Murav’ev VI, Yakimov AV, Chernysev AV (2003) Effect of deformation, welding, and electrocontact heating on the properties of titanium alloy VT20 in pressed and welded structures. Met Sci Heat Treat 45:419–422 | es_ES |
dc.description.references | Spiegel MR (1968) Mathematical handbook of formulas and tables. McGraw-Hill, New York | es_ES |
dc.description.references | Gradsthteyn IS, Ryzhik IM (2007) Table of integrals, series and products. Academic Press Inc., New York | es_ES |
dc.description.references | González-Santander JL, Martín G (2014) Closed form expression for the surface temperature in wet grinding: application to maximum temperature evaluation. J Eng Math. doi: 10.1007/s10665-014-9716-3 | es_ES |