- -

An analysis of the transient regime temperature field in wet grinding

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An analysis of the transient regime temperature field in wet grinding

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author González-Santander Martínez, Juan Luis es_ES
dc.contributor.author Isidro San Juan, José María es_ES
dc.contributor.author Martín, G. es_ES
dc.date.accessioned 2018-05-13T04:20:32Z
dc.date.available 2018-05-13T04:20:32Z
dc.date.issued 2015 es_ES
dc.identifier.issn 0022-0833 es_ES
dc.identifier.uri http://hdl.handle.net/10251/101835
dc.description.abstract [EN] In this paper, the Samara-Valencia model for heat transfer in grinding is considered. This model is particularized to the case of wet grinding, assuming a constant heat transfer coefficient on the workpiece surface and a constant heat flux profile entering into the workpiece, obtaining a solution for the temperature field in the transient regime. Performing the limit in this solution we get a formula analytically equivalent to the well-known solution given by DesRuisseaux for the steady-state temperature field. Also, we derive for the transient regime very simple formulas for relaxation times in wet and dry grinding. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Engineering Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Heat transfer es_ES
dc.subject Samara-Valencia model es_ES
dc.subject Transient regime es_ES
dc.subject Wet grinding es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title An analysis of the transient regime temperature field in wet grinding es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10665-014-9713-6 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation González-Santander Martínez, JL.; Isidro San Juan, JM.; Martín, G. (2015). An analysis of the transient regime temperature field in wet grinding. Journal of Engineering Mathematics. 90(1):141-171. doi:10.1007/s10665-014-9713-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s10665-014-9713-6 es_ES
dc.description.upvformatpinicio 141 es_ES
dc.description.upvformatpfin 171 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 90 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\276377 es_ES
dc.description.references Malkin S (1989) Grinding technology: theory and application of machining with abrasives. Ellis Horwood Ltd, Wiley, New York es_ES
dc.description.references Carslaw H, Jaeger JC (1986) Conduction of heat in solids. Oxford Science Publications, Oxford es_ES
dc.description.references Guo C, Malkin S (1995) Analysis of energy partition in grinding. J Eng Ind 117:55–61 es_ES
dc.description.references Malkin S, Anderson R (1974) Thermal aspects of grinding, part I: energy partition. J Manuf Sci Eng 96:1177–1183 es_ES
dc.description.references Lavine A (1991) Thermal aspects of grinding: the effects of heat generation at the shear planes. Annals of CIRP 40:343–345 es_ES
dc.description.references Lavine A (2000) An exact solution for surface temperature in down grinding. Int J Heat Mass Transf 43:4447–4456 es_ES
dc.description.references Pérez J, Hoyas S, Skuratov D, Ratis Y, Selezneva I, Urchueguía J (2008) Heat transfer analysis of intermittent grinding processes. Int J Heat Mass Transf 51:4132–4138 es_ES
dc.description.references Guo C, Malkin S (1995) Analysis of transient temperature in grinding. J Manuf Sci Eng 117:571–577 es_ES
dc.description.references Skuratov D, Ratis Y, Selezneva I, Pérez J, Fernández de Córdoba P, Urchueguía J (2007) Mathematical modelling and analytical solution for workpiece temperature in grinding. Appl Math Model 31:1039–1047 es_ES
dc.description.references González-Santander JL, Pérez J, Ferná ndez de Córdoba P, Isidro JM (2009) An analysis of the temperature field of the workpiece in dry continuous grinding. J Eng Math 67:165–174 es_ES
dc.description.references Jaeger JC (1942) Moving sources of heat and the temperature at sliding contracts. Proc R Soc New South Wales 76:204–224 es_ES
dc.description.references DesRuisseaux NR (1968) Thermal aspects of grinding processes, PhD dissertation, University of Cincinnati es_ES
dc.description.references DesRuisseaux NR, Zerkle RD (1970) Temperature in semi-infinite and cylindrical bodies subjected to moving heat surfaces and surface cooling. J Heat Transf 92:456–464 es_ES
dc.description.references Abramowitz M, Stegun I (1972) Handbook of mathematical functions. National Bureau of Standards, Washington es_ES
dc.description.references Zhang LC, Suto T, Noguchi TH, Waida T (1992) An overview of applied mechanics in grinding. Manuf Rev 4:261–273 es_ES
dc.description.references Mahdi M, Zhang L (1998) Applied mechanics in grinding-VI. Residual stresses and surface hardening by coupled thermo-plasticity and phase transformation. Int J Mach Tools Manuf 38:1289–1304 es_ES
dc.description.references Zhang LC, Suto T, Noguchi H, Waida T (1993) Applied mechanics in grinding. Part II: modelling of elastic modulus of wheel and interface forces. Int J Mach Tools Manuf 33:245–255 es_ES
dc.description.references Guo C, Wu Y, Varghese V, Malkin S (1999) Temperatures and energy partition for grinding with vitrified CBN wheels. Ann CIRP 42:247–250 es_ES
dc.description.references Zarudi I, Zhang LC (2002) A revisit to some wheel-workpiece interaction problems in surface grinding. Int J Mach Tools Manuf 42:905–913 es_ES
dc.description.references Lavine AS (1988) A simple model for convective cooling during the grinding process. J Eng Ind 110:1–6 es_ES
dc.description.references González-Santander JL, Valdés Placeres JM, Isidro JM (2011) Exact solution for the time-dependent temperature field in dry grinding: application to segmental wheels. Math Probl Eng 2011: 927876, 1–28 es_ES
dc.description.references Lebedev NN (1965) Special functions and their applications. Dover, New York es_ES
dc.description.references González-Santander JL (2009) Modelización matem ática de la transmisión de calor en el proceso del rectificado plano industrial, Ph. D. dissertation, Universidad Politécnica de Valencia es_ES
dc.description.references Oldham KB, Myland JC, Spanier J (2008) An atlas of functions, 2nd edn. Springer, New York es_ES
dc.description.references Corless RM, Gonnet GH, Hare DEG, Jeffrey DJ, Knuth DE (1996) On the Lambert W function. Adv Comput Math 5:329–359 es_ES
dc.description.references Murav’ev VI, Yakimov AV, Chernysev AV (2003) Effect of deformation, welding, and electrocontact heating on the properties of titanium alloy VT20 in pressed and welded structures. Met Sci Heat Treat 45:419–422 es_ES
dc.description.references Spiegel MR (1968) Mathematical handbook of formulas and tables. McGraw-Hill, New York es_ES
dc.description.references Gradsthteyn IS, Ryzhik IM (2007) Table of integrals, series and products. Academic Press Inc., New York es_ES
dc.description.references González-Santander JL, Martín G (2014) Closed form expression for the surface temperature in wet grinding: application to maximum temperature evaluation. J Eng Math. doi: 10.1007/s10665-014-9716-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem