- -

A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method

Show full item record

Bernal-Garcia, A.; Hébert, A.; Roman, JE.; Miró Herrero, R.; Verdú Martín, GJ. (2017). A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method. Journal of Nuclear Science and Technology. 54(10):1085-1094. https://doi.org/10.1080/00223131.2017.1344577

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/101845

Files in this item

Item Metadata

Title: A Krylov-Schur solution of the eigenvalue problem for the neutron diffusion equation discretized with the Raviart-Thomas method
Author: Bernal-Garcia, Alvaro Hébert, Alain Roman, Jose E. Miró Herrero, Rafael Verdú Martín, Gumersindo Jesús
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Embargo end date: 2018-07-05
Abstract:
[EN] Mixed-dual formulations of the finite element method were successfully applied to the neutron diffusion equation, such as the Raviart¿Thomas method in Cartesian geometry and the Raviart¿Thomas¿Schneider in hexagonal ...[+]
Subjects: Neutron diffusion equation , Finite element method , Krylov-Schur , Raviart-Thomas , Reactor physics
Copyrigths: Reserva de todos los derechos
Source:
Journal of Nuclear Science and Technology. (issn: 0022-3131 )
DOI: 10.1080/00223131.2017.1344577
Publisher:
Taylor & Francis
Publisher version: https://doi.org/10.1080/00223131.2017.1344577
Project ID:
info:eu-repo/grantAgreement/MECD//FPU13%2F01009/ES/FPU13%2F01009/
...[+]
info:eu-repo/grantAgreement/MECD//FPU13%2F01009/ES/FPU13%2F01009/
info:eu-repo/grantAgreement/MINECO//ENE2014-59442-P/ES/DESARROLLO DE NUEVOS MODELOS Y CAPACIDADES EN EL SISTEMA DE CODIGOS ACOPLADO VALKIN%2FTH-3D. VERIFICACION, VALIDACION Y CUANTIFICACION DE INCERTIDUMBRES/
info:eu-repo/grantAgreement/MINECO//ENE2015-68353-P/ES/DESARROLLO DE UN CODIGO DE TRANSPORTE NEUTRONICO MODAL 3D POR EL METODO DE LOS VOLUMENES FINITOS Y ORDENADAS DISCRETAS/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEOII%2F2014%2F008/ES/New improved capacities in 3d-VALKIN (Valencian Neutronic Kinetisc). N3D-VALKIN/
info:eu-repo/grantAgreement/MINECO//TIN2016-75985-P/ES/SOLVERS DE VALORES PROPIOS ALTAMENTE ESCALABLES EN EL CONTEXTO DE LA BIBLIOTECA SLEPC/
info:eu-repo/grantAgreement/MINECO//UPPTE%2F2012%2F118/ES/
[-]
Thanks:
This work has been partially supported by the Spanish Ministerio de Eduacion Cultura y Deporte [grant number FPU13/01009]; Spanish Ministerio de Ciencia e Innovacion [project number ENE2014-59442-P]; Spanish Ministerio de ...[+]
Type: Artículo

References

Hébert, A. (1993). Application of a dual variational formulation to finite element reactor calculations. Annals of Nuclear Energy, 20(12), 823-845. doi:10.1016/0306-4549(93)90076-2

Hébert, A. (2008). A Raviart–Thomas–Schneider solution of the diffusion equation in hexagonal geometry. Annals of Nuclear Energy, 35(3), 363-376. doi:10.1016/j.anucene.2007.07.016

Hébert, A. (1986). Preconditioning the Power Method for Reactor Calculations. Nuclear Science and Engineering, 94(1), 1-11. doi:10.13182/nse86-a17111 [+]
Hébert, A. (1993). Application of a dual variational formulation to finite element reactor calculations. Annals of Nuclear Energy, 20(12), 823-845. doi:10.1016/0306-4549(93)90076-2

Hébert, A. (2008). A Raviart–Thomas–Schneider solution of the diffusion equation in hexagonal geometry. Annals of Nuclear Energy, 35(3), 363-376. doi:10.1016/j.anucene.2007.07.016

Hébert, A. (1986). Preconditioning the Power Method for Reactor Calculations. Nuclear Science and Engineering, 94(1), 1-11. doi:10.13182/nse86-a17111

Verdú, G., Ginestar, D., Vidal, V., & Muñoz-Cobo, J. L. (1994). 3D λ-modes of the neutron-diffusion equation. Annals of Nuclear Energy, 21(7), 405-421. doi:10.1016/0306-4549(94)90041-8

Miró, R., Ginestar, D., Verdú, G., & Hennig, D. (2002). A nodal modal method for the neutron diffusion equation. Application to BWR instabilities analysis. Annals of Nuclear Energy, 29(10), 1171-1194. doi:10.1016/s0306-4549(01)00103-7

Hébert A. Applied reactor physics. 2nd ed. Montréal: Presses Internationales Polytechnique; 2016. p. 368–369.

Döring, M. G., Kalkkuhl, J. C., & Schröder, W. (1993). Subspace Iteration for Nonsymmetric Eigenvalue Problems Applied to the λ-Eigenvalue Problem. Nuclear Science and Engineering, 115(3), 244-252. doi:10.13182/nse93-a24053

Modak, R. S., & Jain, V. K. (1996). Sub-space iteration scheme for the evaluation of λ-modes of finite-differenced multi-group neutron diffusion equations. Annals of Nuclear Energy, 23(3), 229-237. doi:10.1016/0306-4549(95)00015-6

Singh, K. P., Modak, R. S., Degweker, S. B., & Singh, K. (2009). Iterative schemes for obtaining dominant alpha-modes of the neutron diffusion equation. Annals of Nuclear Energy, 36(8), 1086-1092. doi:10.1016/j.anucene.2009.05.006

Gupta, A., & Modak, R. S. (2011). Evaluation of dominant time-eigenvalues of neutron transport equation by Meyer’s sub-space iterations. Annals of Nuclear Energy, 38(7), 1680-1686. doi:10.1016/j.anucene.2011.02.016

Kópházi, J., & Lathouwers, D. (2012). Three-dimensional transport calculation of multiple alpha modes in subcritical systems. Annals of Nuclear Energy, 50, 167-174. doi:10.1016/j.anucene.2012.06.021

VERDÚ, G., GINESTAR, D., ROMÁN, J., & VIDAL, V. (2010). 3D Alpha Modes of a Nuclear Power Reactor. Journal of Nuclear Science and Technology, 47(5), 501-514. doi:10.1080/18811248.2010.9711641

Lathouwers, D. (2003). Iterative computation of time-eigenvalues of the neutron transport equation. Annals of Nuclear Energy, 30(17), 1793-1806. doi:10.1016/s0306-4549(03)00151-8

Warsa, J. S., Wareing, T. A., Morel, J. E., McGhee, J. M., & Lehoucq, R. B. (2004). Krylov Subspace Iterations for Deterministick-Eigenvalue Calculations. Nuclear Science and Engineering, 147(1), 26-42. doi:10.13182/nse04-1

Verdu, G., Miro, R., Ginestar, D., & Vidal, V. (1999). The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation. Annals of Nuclear Energy, 26(7), 579-593. doi:10.1016/s0306-4549(98)00077-2

Lehoucq, R. B., Sorensen, D. C., & Yang, C. (1998). ARPACK Users’ Guide. doi:10.1137/1.9780898719628

Boer, B., Lathouwers, D., Kloosterman, J. L., Van Der Hagen, T. H. J. J., & Strydom, G. (2010). Validation of the DALTON-THERMIX Code System with Transient Analyses of the HTR-10 and Application to the PBMR. Nuclear Technology, 170(2), 306-321. doi:10.13182/nt10-a9485

Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019

Hernández, V., Román, J. E., & Vidal, V. (2003). SLEPc: Scalable Library for Eigenvalue Problem Computations. High Performance Computing for Computational Science — VECPAR 2002, 377-391. doi:10.1007/3-540-36569-9_25

Stewart, G. W. (2002). A Krylov--Schur Algorithm for Large Eigenproblems. SIAM Journal on Matrix Analysis and Applications, 23(3), 601-614. doi:10.1137/s0895479800371529

Chao, Y. A., & Shatilla, Y. A. (1995). Conformal Mapping and Hexagonal Nodal Methods —II: Implementation in the ANC-H Code. Nuclear Science and Engineering, 121(2), 210-225. doi:10.13182/nse95-a28559

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record