Parra-Boronat, L.; Sendra, S.; Vincent Vela, MC.; García Gabaldón, M.; Lloret, J. (2017). Improving the Signal Propagation at 2.4 GHz Using Conductive Membranes. IEEE Systems Journal. 11(4):2315-2324. https://doi.org/10.1109/JSYST.2015.2496204
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/102251
[EN] When IEEE 802.11 at 2.4-GHz signal crosses different surfaces, it is generally reduced, but we have seen that it does not happen for all materials. Conductive membranes are able to transport electric charges when they ...[+]
[EN] When IEEE 802.11 at 2.4-GHz signal crosses different surfaces, it is generally reduced, but we have seen that it does not happen for all materials. Conductive membranes are able to transport electric charges when they are submerged into water with electrolytes, so we take profit of their features in order to know in which cases the received signal strength indicator (RSSI) can be improved. In order to achieve our goal, the RSSI is measured at different distances using different environments for the membranes, air, and water environment with different conductivities (distillated water, tap water, and salty water). Results show that different membranes environment produce different signal strengths. Moreover, they can be positive or negative depending on the environment of the membranes and the distance from the access point. In some cases, we registered an increase of more than 14 dBm of the signal when we were using those membranes.[-]
info:eu-repo/grantAgreement/MICINN//TEC2011-27516/ES/RED COGNITIVA BASADA EN GRUPOS DE SENSORES COLABORATIVOS PARA EL SENSADO Y MONITOZACION DEL ENTORNO ACUATICO/
This work was supported in part by the "Ministerio de Ciencia e Innovacion," through the "Plan Nacional de I+D+i 2008-2011" in the "Subprograma de Proyectos de Investigacion Fundamental," project TEC2011-27516.