- -

A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage

Show full item record

Pons Puig, C.; Marti, C.; Forment Millet, JJ.; Crisosto, C.; Dandekar, A.; Granell Richart, A. (2016). A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage. Plant Molecular Biology. 92(4-5):483-503. doi:10.1007/s11103-016-0526-z

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/102311

Files in this item

Item Metadata

Title: A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Peach fruits subjected to prolonged cold storage (CS) to delay decay and over-ripening often develop a form of chilling injury (CI) called mealiness/woolliness (WLT), a flesh textural disorder characterized by lack ...[+]
Subjects: Chilling injury , Mealiness/woolliness , Peach , Ripening , Fruit
Copyrigths: Cerrado
Source:
Plant Molecular Biology. (issn: 0167-4412 )
DOI: 10.1007/s11103-016-0526-z
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s11103-016-0526-z
Type: Artículo

References

Abeles FB (1968) Role of RNA and protein synthesis in abscission. Plant Physiol 43:1577–1586

Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129. doi: 10.1105/tpc.108.058941

Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152. doi: 10.1126/science.284.5423.2148 [+]
Abeles FB (1968) Role of RNA and protein synthesis in abscission. Plant Physiol 43:1577–1586

Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129. doi: 10.1105/tpc.108.058941

Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152. doi: 10.1126/science.284.5423.2148

Andersson A et al (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24

Arsovski AA, Popma, Haughn GW, Carpita NC, McCann MC, Western TL (2009) AtBXL1 encodes a bifunctional β-d-xylosidase/α-l-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells. Plant Physiol 150:1219–1234. doi: 10.1104/pp.109.138388

Ay N, Janack B, Humbeck K (2014) Epigenetic control of plant senescence and linked processes. J Exp Bot 65:3875–3887. doi: 10.1093/jxb/eru132

Barry CS, Llop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986

Begheldo M, Manganaris GA, Bonghi C, Tonutti P (2008) Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony Hard peaches. Postharvest Biol Technol 48:8–8. doi: 10.1016/j.postharvbio.2007.09.023

Bemer M et al (2012) The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell Online 24:4437–4451. doi: 10.1105/tpc.112.103283

Ben-Arie R, Sonego L (1980) Pectolytic enzyme activity involved in woolly breakdown of stored peaches. Phytochem 19:2553–2555. doi: 10.1016/S0031-9422(00)83917-5

Borsani J et al (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823–1837. doi: 10.1093/jxb/erp055

Bouton S et al (2002) QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14:2577–2590. doi: 10.1105/tpc.004259

Brummell DA, Dal Cin V, Crisosto CH, Labavitch JM (2004a) Cell wall metabolism during maturation, ripening and senescence of peach fruit. J Exp Bot 55:2029–2039. doi: 10.1093/jxb/erh227erh227

Brummell DA, Dal Cin V, Lurie S, Crisosto CH, Labavitch JM (2004b) Cell wall metabolism during the development of chilling injury in cold-stored peach fruit: association of mealiness with arrested disassembly of cell wall pectins. J Exp Bot 55:2041–2052. doi: 10.1093/jxb/erh228erh228

Buchanan CD et al (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720. doi: 10.1007/s11103-005-7876-2

Buescher RW, Furmanski RJ (1978) Role of pectinesterase and polygalacturonase in the formation of woolliness in peaches. J Food Sci 43:264–266. doi: 10.1111/j.1365-2621.1978.tb09788.x

Campos-Vargas R et al (2006) Seasonal variation in the development of chilling injury in ’O’Henry’ peaches. Scientia Hortic 110:79–83

Cao S, Ye M, Jiang S (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24:683–690. doi: 10.1007/s00299-005-0061-x

Celesnik H, Ali GS, Robison FM, Reddy ASN (2013) Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time. Biol Open 2:424–431. doi: 10.1242/bio.20133764

Corbacho J, Romojaro F, Pech J-C, Latché A, Gomez-Jimenez MC (2013) Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis. PLoS One 8:e58363. doi: 10.1371/journal.pone.0058363

Crisosto C, Mitchell F, Ju Z (1999) Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience 34:1116–1118

Dagar A et al (2013) Comparative transcript profiling of a peach and its nectarine mutant at harvest reveals differences in gene expression related to storability. Tree Genet Genom 9:223–235. doi: 10.1007/s11295-012-0549-9

Dardick C, Callahan A, Chiozzotto R, Schaffer R, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13

De Godoy F et al (2013) Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot 64:2449–2466. doi: 10.1093/jxb/ert106

Del Campillo E, Lewis LN (1992) Identification and kinetics of accumulation of proteins induced by ethylene in bean abscission zones. Plant Physiol 98:955–961

Dhanapal AP, Martínez-García PJ, Gradziel, Crisosto CH (2012) First genetic linkage map of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) fruit with SSR and SNP markers. J Plant Sci Mol Breeding 1. doi: 10.7243/2050-2389-1-3

Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984. doi: 10.1105/tpc.108.063958

Dong L, Zhou H-W, Sonego L, Lers A, Lurie S (2001) Ethylene involvement in the cold storage disorder of ‘Flavortop’ nectarine. Postharvest Biol Technol 23:105–115. doi: 10.1016/S0925-5214(01)00106-5

El-Sharkawy I, Kim WS, Jayasankar S, Svircev AM, Brown DC (2008) Differential regulation of four members of the ACC synthase gene family in plum. J Exp Bot 59:2009–2027. doi: 10.1093/jxb/ern056ern056

Eriksson EM et al (2004) Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136:4184–4197. doi: 10.1104/pp.104.045765

Falara V, Manganaris G, Ziliotto F, Manganaris A, Bonghi C, Ramina A, Kanellis A (2011) A ß-d-xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance. Funct Int Genom 11:357–368. doi: 10.1007/s10142-010-0204-1

Farrona S et al (2011) Brahma is required for proper expression of the floral repressor FLC in Arabidopsis. PLoS One 6:e17997. doi: 10.1371/journal.pone.0017997

Feng J et al (2015) SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Mol Plant 8:1038–1052. doi: 10.1016/j.molp.2015.01.011

Fernández-Trujillo JP, Cano A, Artés F (1998) Physiological changes in peaches related to chilling injury and ripening. Postharvest Biol Technol 13:109–119. doi: 10.1016/S0925-5214(98)00006-4

Fishman ML, Levaj B, Gillespie D, Scorza R (1993) Changes in the physico-chemical properties of peach fruit pectin during on-tree ripening and storage. J Am Soc Hortic Sci 118:343–349

Fornara F et al (2015) The GI–CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. Plant J 81:695–706. doi: 10.1111/tpj.12759

Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P (2006) Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol 170:739–752. doi: 10.1111/j.1469-8137.2006.01705.x

Franssen SU et al (2011) Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc Nat Acad Sci 108:19276–19281. doi: 10.1073/pnas.1107680108

Fraser PD, Bramley P, Seymour GB (2001) Effect of the Cnr mutation on carotenoid formation during tomato fruit ripening. Phytochem 58:75–79

Fujisawa M et al (2014) Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell. doi: 10.1105/tpc.113.119453

Gille S, Pauly M (2012) O-acetylation of plant cell wall polysaccharides. Front Plant Sci 3:12. doi: 10.3389/fpls.2012.00012

Gilmour S, Zarka D, Stockinger E, Salazar M, Houghton J, Thomashow M (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

Gonzalez-Aguero M et al (2008) Identification of woolliness response genes in peach fruit after post-harvest treatments. J Exp Bot 59:1973–1986

Hopkins MT, Lampi Y, Wang T-W, Liu Z, Thompson JE (2008) Eukaryotic translation initiation factor 5A is involved in pathogen-induced cell death and development of disease symptoms in Arabidopsis. Plant Physiol 148:479–489. doi: 10.1104/pp.108.118869

Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626. doi: 10.1104/pp.006783

Huang XS, Wang W, Zhang Q, Liu JH (2013) A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol 162:1178–1194. doi: 10.1104/pp.112.210740

Huang XS et al (2015) ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase. J Exp Bot. doi: 10.1093/jxb/erv138

Humbeck K (2013) Epigenetic and small RNA regulation of senescence. Plant Mol Biol 82:529–537. doi: 10.1007/s11103-012-0005-0

Jaglo-Ottosen K, Gilmour S, Zarka D, Schabenberger O, Thomashow M (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

Kader AA, Mitchell FG (1989) Maturity and quality. In: James H., LaRue RSJ (ed) Peaches, plums, and nectarines: growing and handling for fresh market Vol Publication No. 3331. cooperative extension. University of California, Division of Agriculture and Natural Resources, Oakland, CA, pp 191–196

Kalberer SR, Wisniewski M, Arora R (2006) Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci 171:3–16. doi: 10.1016/j.plantsci.2006.02.013

Kim HY, Farcuh M, Cohen Y, Crisosto C, Sadka A, Blumwald E (2015) Non-climacteric ripening and sorbitol homeostasis in plum fruits. Plant Sci 231:30–39. doi: 10.1016/j.plantsci.2014.11.002

Kodaira KS et al (2011) Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiol 157:742–756. doi: 10.1104/pp.111.182683

Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350. doi: 10.1046/j.1365-3040.2000.00560.x

Lauxmann MA et al (2014) Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit. Plant Cell Environ 37:601–616. doi: 10.1111/pce.12181

Leboeuf E, Guillon F, Thoiron S, Lahaye M (2005) Biochemical and immunohistochemical analysis of pectic polysaccharides in the cell walls of Arabidopsis mutant QUASIMODO 1 suspension-cultured cells: implications for cell adhesion. J Exp Bot 56:3171–3182. doi: 10.1093/jxb/eri314

Lester D, Speirs J, Orr G, Brady C (1994) Peach (Prunus persica) endopolygalacturonase cDNA isolation and mRNA analysis in melting and nonmelting peach cultivars. Plant Physiol 105:225–231

Lildballe DL, Pedersen DS, Kalamajka R, Emmersen J, Houben A, Grasser KD (2008) The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis. J Mol Biol 384:9–21. doi: 10.1016/j.jmb.2008.09.014

Liners F, Gaspar T, Van Cutsem P (1994) Acetyl- and methyl-esterification of pectins of friable and compact sugar-beet calli: consequences for intercellular adhesion. Planta 192:545–556. doi: 10.1007/bf00203593

Liu Z et al (2008) Modulation of eIF5A1 expression alters xylem abundance in Arabidopsis thaliana. J Exp Bot 59:939–950. doi: 10.1093/jxb/ern017

Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408. doi: 10.1006/meth.2001.1262

Lombardo VA et al (2011) Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol 157:1696–1710. doi: 10.1104/pp.111.186064

Lovisetto A, Guzzo F, Tadiello A, Confortin E, Pavanello A, Botton A, Casadoro G (2013) Characterization of a bZIP gene highly expressed during ripening of the peach fruit. Plant Physiol Biochem 70:462–470. doi: 10.1016/j.plaphy.2013.06.014

Lurie S, Crisosto C (2005) Chilling injury in peach and nectarine. Postharvest Biol Technol 37:195–208

Lurie S, Levin A, Greve LC, Labavitch JM (1994) Pectic polymer changes in nectarines during normal and abnormal ripening. Phytochem 36:11–17. doi: 10.1016/S0031-9422(00)97003-1

Lurie S, Zhou HW, Lers A, Sonego L, Alexandrov S, Shomer I (2003) Study of pectin esterase and changes in pectin methylation during normal and abnormal peach ripening. Physiol Plant 119:287–294. doi: 10.1034/j.1399-3054.2003.00178.x

Luza JG, Van Gorsel R, Polito VS, Kader AA (1992) Chilling injury in peaches: a cytochemical and ultrastructural cell wall study. J Am Soc Hortic Sci 117:114–118

Manganaris G, Rasori A, Bassi D, Geuna F, Ramina A, Tonutti P, Bonghi C (2011) Comparative transcript profiling of apricot (Prunus armeniaca L.) fruit development and on-tree ripening. Tree Genet Genom 7:609–616. doi: 10.1007/s11295-010-0360-4

Manning K et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952. doi: 10.1038/ng1841

Mlynárová L, Nap JP, Bisseling T (2007) The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J 51:874–885. doi: 10.1111/j.1365-313X.2007.03185.x

Mouille G et al (2007) Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant J 50:605–614. doi: 10.1111/j.1365-313X.2007.03086.x

Muñoz-Robredo P, Rubio P, Infante R, Campos-Vargas R, Manríquez D, González-Agüero M, Defilippi BG (2012) Ethylene biosynthesis in apricot: identification of a ripening-related 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene. Postharvest Biol Technol 63:85–90. doi: 10.1016/j.postharvbio.2011.09.001

Nakai Y, Fujiwara S, Kubo Y, Sato MH (2013) Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis. Plant Signal Behav 8:e23358. doi: 10.4161/psb.23358

Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulieres C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63. doi: 10.1111/j.1467-7652.2010.00530.xPBI530

Nilo R et al (2010) Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomics 11:43. doi: 10.1186/1471-2164-11-43

Ning YQ et al (2015) Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res. doi: 10.1093/nar/gku1382

Nunes C et al (2013) The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation. Plant Physiol 162:1720–1732. doi: 10.1104/pp.113.220657

Obenland DM, Crisosto CH, Rose JKC (2003) Expansin protein levels decline with the development of mealiness in peaches. Postharvest Biol Technol 29:11–18. doi: 10.1016/S0925-5214(02)00245-4

Ogundiwin E et al (2008) Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol 68:379–397

Ogundiwin EA, Peace CP, Gradziel, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587. doi: 10.1186/1471-2164-10-587

Oono Y et al (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Int Genom 6:212–234. doi: 10.1007/s10142-005-0014-z

Orfila C et al (2001) Altered middle lamella homogalacturonan and disrupted deposition of (1–>5)-alpha-L-arabinan in the pericarp of Cnr, a ripening mutant of tomato. Plant Physiol 126:210–221

Orfila C, Huisman MM, Willats WG, Van Alebeek GJ, Schols HA, Seymour GB, Knox JP (2002) Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening. Planta 215:440–447. doi: 10.1007/s00425-002-0753-1

Orr G, Brady C (1993) Relationship of endopolygalacturonase activity to fruit softening in a freestone peach. Postharvest Biol Technol 3:121–130. doi: 10.1016/0925-5214(93)90004-M

Pandey N et al (2013) CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics 14:216

Pavez L, Hödar C, Olivares F, González M, Cambiazo V (2013) Effects of postharvest treatments on gene expression in Prunus persica fruit: normal and altered ripening. Postharvest Biol Technol 75:125–134. doi: 10.1016/j.postharvbio.2012.08.002

Pavlidis P, Noble WS (2003) Matrix2png: a utility for visualizing matrix data. Bioinformatics 19:295–296. doi: 10.1093/bioinformatics/19.2.295

Peace C, Crisosto C, Gradziel T (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breeding 16:21–31

Polashock JJ, Arora R, Peng Y, Naik D, Rowland LJ (2010) Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J Am Soc Hortic Sci 135:40–48

Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A (2014) A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response. PLoS One 9:e90706. doi: 10.1371/journal.pone.0090706

Pons C et al (2015) Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms. BMC Genomics 16:245

Pressey R, Avants J (1978) Differences in polygalacteronase composition of clingstone and freestone peaches. J Food Sci 43:1415–1423

Rajasundaram D, Selbig J, Persson S, Klie S (2014) Co-ordination and divergence of cell-specific transcription and translation of genes in Arabidopsis root cells. Annal Bot. doi: 10.1093/aob/mcu151

Rapacz M (2002) Cold-deacclimation of oilseed rape (Brassica napus var. oleifera) in response to fluctuating temperatures and photoperiod. Annal Bot 89:543–549. doi: 10.1093/aob/mcf090

Romeu J, Monforte A, Sanchez G, Granell A, Garcia-Brunton J, Badenes M, Rios G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52

Sakamoto T, Bonnin E, Thibault JF (2003) A new approach for studying interaction of the polygalacturonase-inhibiting proteins with pectins. Biochim Biophys Acta (BBA) 1621:280–284. doi: 10.1016/S0304-4165(03)00093-X

Sanchez G, Venegas-Caleron M, Salas J, Monforte A, Badenes M, Granell A (2013) An integrative "omics" approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics 14:343

Sánchez G, Besada C, Badenes ML, Monforte AJ, Granell A (2012) A non-targeted approach unravels the volatile network in peach fruit. PLoS One 7:e38992. doi: 10.1371/journal.pone.0038992

Shima Y et al (2014) Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis. Biosci Biotechnol Biochem 78:231–237. doi: 10.1080/09168451.2014.878221

Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48:1148–1158. doi: 10.1093/pcp/pcm088

Tacken E et al (2010) The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. Plant Physiol 153:294–305. doi: 10.1104/pp.109.151092

Tadiello A et al (2016) On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening. BMC Plant Biol 16:1–17. doi: 10.1186/s12870-016-0730-7

Tatsuki M et al (2013) Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). J Exp Bot. doi: 10.1093/jxb/ers381

Thain SC et al (2004) Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiol 136:3751–3761. doi: 10.1104/pp.104.042523

Tonutti P, Bonghi C, Ruperti B, Tornielli GB, Ramina A (1997) Ethylene evolution and 1-aminocyclopropane-1-carboxylate oxidase gene expression during early development and ripening of peach fruit. J Am Soc Hortic Sci 122:642–647

Trainotti L, Zanin D, Casadoro G (2003) A cell wall-oriented genomic approach reveals a new and unexpected complexity of the softening in peaches. J Exp Bot 54:1821–1832

Trainotti L, Tadiello A, Casadoro G (2007) The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot 58:3299–3308. doi: 10.1093/jxb/erm178

Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Nat Acad Sci 98:5116–5121. doi: 10.1073/pnas.091062498

Vincken JP, Schols HA, Oomen RJFJ, McCann MC, Ulvskov P, Voragen AGJ, Visser RGF (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789. doi: 10.1104/pp.103.022350

Vizoso P et al (2009) Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics 10:423

Von Mollendorf LJ (1987) Woolliness in peaches and nectarines: a review. 1. Maturity and external factors. Hortic Sci 5:1–3

Wang K et al (2013) The metabolism of soluble carbohydrates related to chilling injury in peach fruit exposed to cold stress. Postharvest Biol Technol 86:53–61. doi: 10.1016/j.postharvbio.2013.06.020

Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147:1199–1211. doi: 10.1104/pp.108.117812

Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J Exp Bot 62:3481–3488. doi: 10.1093/jxb/err028

Zhang C, Tian S (2009) Crucial contribution of membrane lipids’ unsaturation to acquisition of chilling-tolerance in peach fruit stored at 0 °C. Food Chem 115:405–411. doi: 10.1016/j.foodchem.2008.12.021

Zhang C, Ding Z, Xu X, Wang Q, Qin G, Tian S (2010) Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury. Amino Acids 39:181–194. doi: 10.1007/s00726-009-0397-6

Zhang B, Xi WP, Wei WW, Shen JJ, Ferguson I, Chen KS (2011) Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf-life of peach fruit. Postharvest Biol Technol 60:7–16. doi: 10.1016/j.postharvbio.2010.09.012

Zhao D, Shen L, Fan B, Yu M, Zheng Y, Lv S, Sheng J (2009) Ethylene and cold participate in the regulation of LeCBF1 gene expression in postharvest tomato fruits. FEBS Lett 583:3329–3334. doi: 10.1016/j.febslet.2009.09.029S0014-5793(09)00717-0

Zhong S et al (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat. Biotech 31:154–159. doi: 10.1038/nbt.2462 . http://www.nature.com/nbt/journal/v31/n2/abs/nbt.2462.html#supplementary-information

Zhou HW, Dong L, Ben-Arie R, Lurie S (2001) The role of ethylene in the prevention of chilling injury in nectarines. J Plant Physiol 158:55–61. doi: 10.1078/0176-1617-00126

Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z (2014) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55:119–135. doi: 10.1093/pcp/pct162

Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P (2008) Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP. J Exp Bot 59:2781–2791. doi: 10.1093/jxb/ern136

Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J. doi: 10.1111/pbi.12559

[-]

This item appears in the following Collection(s)

Show full item record