- -

A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage

Show simple item record

Files in this item

dc.contributor.author Pons Puig, Clara es_ES
dc.contributor.author Marti, Cristina es_ES
dc.contributor.author Forment Millet, José Javier es_ES
dc.contributor.author Crisosto, CH es_ES
dc.contributor.author Dandekar, A es_ES
dc.contributor.author Granell Richart, Antonio es_ES
dc.date.accessioned 2018-05-21T04:22:11Z
dc.date.available 2018-05-21T04:22:11Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0167-4412 es_ES
dc.identifier.uri http://hdl.handle.net/10251/102311
dc.description.abstract [EN] Peach fruits subjected to prolonged cold storage (CS) to delay decay and over-ripening often develop a form of chilling injury (CI) called mealiness/woolliness (WLT), a flesh textural disorder characterized by lack of juiciness. Transcript profiles were analyzed after different lengths of CS and subsequent shelf life ripening (SLR) in pools of fruits from siblings of the Pop-DG population with contrasting sensitivity to develop WLT. This was followed by quantitative PCR on pools and individual lines of the Pop-DG population to validate and extend the microarray results. Relative tolerance to WLT development during SLR was related to the fruit's ability to recover from cold and the reactivation of normal ripening, processes that are probably regulated by transcription factors involved in stress protection, stress recovery and induction of ripening. Furthermore, our results showed that altered ripening in WLT fruits during shelf life is probably due, in part, to cold-induced desynchronization of the ripening program involving ethylene and auxin hormonal regulation of metabolism and cell wall. In addition, we found strong correlation between expression of RNA translation and protein assembly genes and the visual injury symptoms. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Plant Molecular Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Chilling injury es_ES
dc.subject Mealiness/woolliness es_ES
dc.subject Peach es_ES
dc.subject Ripening es_ES
dc.subject Fruit es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11103-016-0526-z es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Pons Puig, C.; Marti, C.; Forment Millet, JJ.; Crisosto, C.; Dandekar, A.; Granell Richart, A. (2016). A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage. Plant Molecular Biology. 92(4-5):483-503. doi:10.1007/s11103-016-0526-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11103-016-0526-z es_ES
dc.description.upvformatpinicio 483 es_ES
dc.description.upvformatpfin 503 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 92 es_ES
dc.description.issue 4-5 es_ES
dc.relation.pasarela S\331629 es_ES
dc.description.references Abeles FB (1968) Role of RNA and protein synthesis in abscission. Plant Physiol 43:1577–1586 es_ES
dc.description.references Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129. doi: 10.1105/tpc.108.058941 es_ES
dc.description.references Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152. doi: 10.1126/science.284.5423.2148 es_ES
dc.description.references Andersson A et al (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24 es_ES
dc.description.references Arsovski AA, Popma, Haughn GW, Carpita NC, McCann MC, Western TL (2009) AtBXL1 encodes a bifunctional β-d-xylosidase/α-l-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells. Plant Physiol 150:1219–1234. doi: 10.1104/pp.109.138388 es_ES
dc.description.references Ay N, Janack B, Humbeck K (2014) Epigenetic control of plant senescence and linked processes. J Exp Bot 65:3875–3887. doi: 10.1093/jxb/eru132 es_ES
dc.description.references Barry CS, Llop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986 es_ES
dc.description.references Begheldo M, Manganaris GA, Bonghi C, Tonutti P (2008) Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony Hard peaches. Postharvest Biol Technol 48:8–8. doi: 10.1016/j.postharvbio.2007.09.023 es_ES
dc.description.references Bemer M et al (2012) The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell Online 24:4437–4451. doi: 10.1105/tpc.112.103283 es_ES
dc.description.references Ben-Arie R, Sonego L (1980) Pectolytic enzyme activity involved in woolly breakdown of stored peaches. Phytochem 19:2553–2555. doi: 10.1016/S0031-9422(00)83917-5 es_ES
dc.description.references Borsani J et al (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823–1837. doi: 10.1093/jxb/erp055 es_ES
dc.description.references Bouton S et al (2002) QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14:2577–2590. doi: 10.1105/tpc.004259 es_ES
dc.description.references Brummell DA, Dal Cin V, Crisosto CH, Labavitch JM (2004a) Cell wall metabolism during maturation, ripening and senescence of peach fruit. J Exp Bot 55:2029–2039. doi: 10.1093/jxb/erh227erh227 es_ES
dc.description.references Brummell DA, Dal Cin V, Lurie S, Crisosto CH, Labavitch JM (2004b) Cell wall metabolism during the development of chilling injury in cold-stored peach fruit: association of mealiness with arrested disassembly of cell wall pectins. J Exp Bot 55:2041–2052. doi: 10.1093/jxb/erh228erh228 es_ES
dc.description.references Buchanan CD et al (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720. doi: 10.1007/s11103-005-7876-2 es_ES
dc.description.references Buescher RW, Furmanski RJ (1978) Role of pectinesterase and polygalacturonase in the formation of woolliness in peaches. J Food Sci 43:264–266. doi: 10.1111/j.1365-2621.1978.tb09788.x es_ES
dc.description.references Campos-Vargas R et al (2006) Seasonal variation in the development of chilling injury in ’O’Henry’ peaches. Scientia Hortic 110:79–83 es_ES
dc.description.references Cao S, Ye M, Jiang S (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24:683–690. doi: 10.1007/s00299-005-0061-x es_ES
dc.description.references Celesnik H, Ali GS, Robison FM, Reddy ASN (2013) Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time. Biol Open 2:424–431. doi: 10.1242/bio.20133764 es_ES
dc.description.references Corbacho J, Romojaro F, Pech J-C, Latché A, Gomez-Jimenez MC (2013) Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis. PLoS One 8:e58363. doi: 10.1371/journal.pone.0058363 es_ES
dc.description.references Crisosto C, Mitchell F, Ju Z (1999) Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience 34:1116–1118 es_ES
dc.description.references Dagar A et al (2013) Comparative transcript profiling of a peach and its nectarine mutant at harvest reveals differences in gene expression related to storability. Tree Genet Genom 9:223–235. doi: 10.1007/s11295-012-0549-9 es_ES
dc.description.references Dardick C, Callahan A, Chiozzotto R, Schaffer R, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13 es_ES
dc.description.references De Godoy F et al (2013) Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot 64:2449–2466. doi: 10.1093/jxb/ert106 es_ES
dc.description.references Del Campillo E, Lewis LN (1992) Identification and kinetics of accumulation of proteins induced by ethylene in bean abscission zones. Plant Physiol 98:955–961 es_ES
dc.description.references Dhanapal AP, Martínez-García PJ, Gradziel, Crisosto CH (2012) First genetic linkage map of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) fruit with SSR and SNP markers. J Plant Sci Mol Breeding 1. doi: 10.7243/2050-2389-1-3 es_ES
dc.description.references Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984. doi: 10.1105/tpc.108.063958 es_ES
dc.description.references Dong L, Zhou H-W, Sonego L, Lers A, Lurie S (2001) Ethylene involvement in the cold storage disorder of ‘Flavortop’ nectarine. Postharvest Biol Technol 23:105–115. doi: 10.1016/S0925-5214(01)00106-5 es_ES
dc.description.references El-Sharkawy I, Kim WS, Jayasankar S, Svircev AM, Brown DC (2008) Differential regulation of four members of the ACC synthase gene family in plum. J Exp Bot 59:2009–2027. doi: 10.1093/jxb/ern056ern056 es_ES
dc.description.references Eriksson EM et al (2004) Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136:4184–4197. doi: 10.1104/pp.104.045765 es_ES
dc.description.references Falara V, Manganaris G, Ziliotto F, Manganaris A, Bonghi C, Ramina A, Kanellis A (2011) A ß-d-xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance. Funct Int Genom 11:357–368. doi: 10.1007/s10142-010-0204-1 es_ES
dc.description.references Farrona S et al (2011) Brahma is required for proper expression of the floral repressor FLC in Arabidopsis. PLoS One 6:e17997. doi: 10.1371/journal.pone.0017997 es_ES
dc.description.references Feng J et al (2015) SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Mol Plant 8:1038–1052. doi: 10.1016/j.molp.2015.01.011 es_ES
dc.description.references Fernández-Trujillo JP, Cano A, Artés F (1998) Physiological changes in peaches related to chilling injury and ripening. Postharvest Biol Technol 13:109–119. doi: 10.1016/S0925-5214(98)00006-4 es_ES
dc.description.references Fishman ML, Levaj B, Gillespie D, Scorza R (1993) Changes in the physico-chemical properties of peach fruit pectin during on-tree ripening and storage. J Am Soc Hortic Sci 118:343–349 es_ES
dc.description.references Fornara F et al (2015) The GI–CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. Plant J 81:695–706. doi: 10.1111/tpj.12759 es_ES
dc.description.references Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P (2006) Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol 170:739–752. doi: 10.1111/j.1469-8137.2006.01705.x es_ES
dc.description.references Franssen SU et al (2011) Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc Nat Acad Sci 108:19276–19281. doi: 10.1073/pnas.1107680108 es_ES
dc.description.references Fraser PD, Bramley P, Seymour GB (2001) Effect of the Cnr mutation on carotenoid formation during tomato fruit ripening. Phytochem 58:75–79 es_ES
dc.description.references Fujisawa M et al (2014) Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell. doi: 10.1105/tpc.113.119453 es_ES
dc.description.references Gille S, Pauly M (2012) O-acetylation of plant cell wall polysaccharides. Front Plant Sci 3:12. doi: 10.3389/fpls.2012.00012 es_ES
dc.description.references Gilmour S, Zarka D, Stockinger E, Salazar M, Houghton J, Thomashow M (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442 es_ES
dc.description.references Gonzalez-Aguero M et al (2008) Identification of woolliness response genes in peach fruit after post-harvest treatments. J Exp Bot 59:1973–1986 es_ES
dc.description.references Hopkins MT, Lampi Y, Wang T-W, Liu Z, Thompson JE (2008) Eukaryotic translation initiation factor 5A is involved in pathogen-induced cell death and development of disease symptoms in Arabidopsis. Plant Physiol 148:479–489. doi: 10.1104/pp.108.118869 es_ES
dc.description.references Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626. doi: 10.1104/pp.006783 es_ES
dc.description.references Huang XS, Wang W, Zhang Q, Liu JH (2013) A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol 162:1178–1194. doi: 10.1104/pp.112.210740 es_ES
dc.description.references Huang XS et al (2015) ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase. J Exp Bot. doi: 10.1093/jxb/erv138 es_ES
dc.description.references Humbeck K (2013) Epigenetic and small RNA regulation of senescence. Plant Mol Biol 82:529–537. doi: 10.1007/s11103-012-0005-0 es_ES
dc.description.references Jaglo-Ottosen K, Gilmour S, Zarka D, Schabenberger O, Thomashow M (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106 es_ES
dc.description.references Kader AA, Mitchell FG (1989) Maturity and quality. In: James H., LaRue RSJ (ed) Peaches, plums, and nectarines: growing and handling for fresh market Vol Publication No. 3331. cooperative extension. University of California, Division of Agriculture and Natural Resources, Oakland, CA, pp 191–196 es_ES
dc.description.references Kalberer SR, Wisniewski M, Arora R (2006) Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci 171:3–16. doi: 10.1016/j.plantsci.2006.02.013 es_ES
dc.description.references Kim HY, Farcuh M, Cohen Y, Crisosto C, Sadka A, Blumwald E (2015) Non-climacteric ripening and sorbitol homeostasis in plum fruits. Plant Sci 231:30–39. doi: 10.1016/j.plantsci.2014.11.002 es_ES
dc.description.references Kodaira KS et al (2011) Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiol 157:742–756. doi: 10.1104/pp.111.182683 es_ES
dc.description.references Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350. doi: 10.1046/j.1365-3040.2000.00560.x es_ES
dc.description.references Lauxmann MA et al (2014) Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit. Plant Cell Environ 37:601–616. doi: 10.1111/pce.12181 es_ES
dc.description.references Leboeuf E, Guillon F, Thoiron S, Lahaye M (2005) Biochemical and immunohistochemical analysis of pectic polysaccharides in the cell walls of Arabidopsis mutant QUASIMODO 1 suspension-cultured cells: implications for cell adhesion. J Exp Bot 56:3171–3182. doi: 10.1093/jxb/eri314 es_ES
dc.description.references Lester D, Speirs J, Orr G, Brady C (1994) Peach (Prunus persica) endopolygalacturonase cDNA isolation and mRNA analysis in melting and nonmelting peach cultivars. Plant Physiol 105:225–231 es_ES
dc.description.references Lildballe DL, Pedersen DS, Kalamajka R, Emmersen J, Houben A, Grasser KD (2008) The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis. J Mol Biol 384:9–21. doi: 10.1016/j.jmb.2008.09.014 es_ES
dc.description.references Liners F, Gaspar T, Van Cutsem P (1994) Acetyl- and methyl-esterification of pectins of friable and compact sugar-beet calli: consequences for intercellular adhesion. Planta 192:545–556. doi: 10.1007/bf00203593 es_ES
dc.description.references Liu Z et al (2008) Modulation of eIF5A1 expression alters xylem abundance in Arabidopsis thaliana. J Exp Bot 59:939–950. doi: 10.1093/jxb/ern017 es_ES
dc.description.references Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 es_ES
dc.description.references Lombardo VA et al (2011) Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol 157:1696–1710. doi: 10.1104/pp.111.186064 es_ES
dc.description.references Lovisetto A, Guzzo F, Tadiello A, Confortin E, Pavanello A, Botton A, Casadoro G (2013) Characterization of a bZIP gene highly expressed during ripening of the peach fruit. Plant Physiol Biochem 70:462–470. doi: 10.1016/j.plaphy.2013.06.014 es_ES
dc.description.references Lurie S, Crisosto C (2005) Chilling injury in peach and nectarine. Postharvest Biol Technol 37:195–208 es_ES
dc.description.references Lurie S, Levin A, Greve LC, Labavitch JM (1994) Pectic polymer changes in nectarines during normal and abnormal ripening. Phytochem 36:11–17. doi: 10.1016/S0031-9422(00)97003-1 es_ES
dc.description.references Lurie S, Zhou HW, Lers A, Sonego L, Alexandrov S, Shomer I (2003) Study of pectin esterase and changes in pectin methylation during normal and abnormal peach ripening. Physiol Plant 119:287–294. doi: 10.1034/j.1399-3054.2003.00178.x es_ES
dc.description.references Luza JG, Van Gorsel R, Polito VS, Kader AA (1992) Chilling injury in peaches: a cytochemical and ultrastructural cell wall study. J Am Soc Hortic Sci 117:114–118 es_ES
dc.description.references Manganaris G, Rasori A, Bassi D, Geuna F, Ramina A, Tonutti P, Bonghi C (2011) Comparative transcript profiling of apricot (Prunus armeniaca L.) fruit development and on-tree ripening. Tree Genet Genom 7:609–616. doi: 10.1007/s11295-010-0360-4 es_ES
dc.description.references Manning K et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952. doi: 10.1038/ng1841 es_ES
dc.description.references Mlynárová L, Nap JP, Bisseling T (2007) The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J 51:874–885. doi: 10.1111/j.1365-313X.2007.03185.x es_ES
dc.description.references Mouille G et al (2007) Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant J 50:605–614. doi: 10.1111/j.1365-313X.2007.03086.x es_ES
dc.description.references Muñoz-Robredo P, Rubio P, Infante R, Campos-Vargas R, Manríquez D, González-Agüero M, Defilippi BG (2012) Ethylene biosynthesis in apricot: identification of a ripening-related 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene. Postharvest Biol Technol 63:85–90. doi: 10.1016/j.postharvbio.2011.09.001 es_ES
dc.description.references Nakai Y, Fujiwara S, Kubo Y, Sato MH (2013) Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis. Plant Signal Behav 8:e23358. doi: 10.4161/psb.23358 es_ES
dc.description.references Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulieres C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63. doi: 10.1111/j.1467-7652.2010.00530.xPBI530 es_ES
dc.description.references Nilo R et al (2010) Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomics 11:43. doi: 10.1186/1471-2164-11-43 es_ES
dc.description.references Ning YQ et al (2015) Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res. doi: 10.1093/nar/gku1382 es_ES
dc.description.references Nunes C et al (2013) The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation. Plant Physiol 162:1720–1732. doi: 10.1104/pp.113.220657 es_ES
dc.description.references Obenland DM, Crisosto CH, Rose JKC (2003) Expansin protein levels decline with the development of mealiness in peaches. Postharvest Biol Technol 29:11–18. doi: 10.1016/S0925-5214(02)00245-4 es_ES
dc.description.references Ogundiwin E et al (2008) Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol 68:379–397 es_ES
dc.description.references Ogundiwin EA, Peace CP, Gradziel, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587. doi: 10.1186/1471-2164-10-587 es_ES
dc.description.references Oono Y et al (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Int Genom 6:212–234. doi: 10.1007/s10142-005-0014-z es_ES
dc.description.references Orfila C et al (2001) Altered middle lamella homogalacturonan and disrupted deposition of (1–>5)-alpha-L-arabinan in the pericarp of Cnr, a ripening mutant of tomato. Plant Physiol 126:210–221 es_ES
dc.description.references Orfila C, Huisman MM, Willats WG, Van Alebeek GJ, Schols HA, Seymour GB, Knox JP (2002) Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening. Planta 215:440–447. doi: 10.1007/s00425-002-0753-1 es_ES
dc.description.references Orr G, Brady C (1993) Relationship of endopolygalacturonase activity to fruit softening in a freestone peach. Postharvest Biol Technol 3:121–130. doi: 10.1016/0925-5214(93)90004-M es_ES
dc.description.references Pandey N et al (2013) CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics 14:216 es_ES
dc.description.references Pavez L, Hödar C, Olivares F, González M, Cambiazo V (2013) Effects of postharvest treatments on gene expression in Prunus persica fruit: normal and altered ripening. Postharvest Biol Technol 75:125–134. doi: 10.1016/j.postharvbio.2012.08.002 es_ES
dc.description.references Pavlidis P, Noble WS (2003) Matrix2png: a utility for visualizing matrix data. Bioinformatics 19:295–296. doi: 10.1093/bioinformatics/19.2.295 es_ES
dc.description.references Peace C, Crisosto C, Gradziel T (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breeding 16:21–31 es_ES
dc.description.references Polashock JJ, Arora R, Peng Y, Naik D, Rowland LJ (2010) Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J Am Soc Hortic Sci 135:40–48 es_ES
dc.description.references Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A (2014) A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response. PLoS One 9:e90706. doi: 10.1371/journal.pone.0090706 es_ES
dc.description.references Pons C et al (2015) Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms. BMC Genomics 16:245 es_ES
dc.description.references Pressey R, Avants J (1978) Differences in polygalacteronase composition of clingstone and freestone peaches. J Food Sci 43:1415–1423 es_ES
dc.description.references Rajasundaram D, Selbig J, Persson S, Klie S (2014) Co-ordination and divergence of cell-specific transcription and translation of genes in Arabidopsis root cells. Annal Bot. doi: 10.1093/aob/mcu151 es_ES
dc.description.references Rapacz M (2002) Cold-deacclimation of oilseed rape (Brassica napus var. oleifera) in response to fluctuating temperatures and photoperiod. Annal Bot 89:543–549. doi: 10.1093/aob/mcf090 es_ES
dc.description.references Romeu J, Monforte A, Sanchez G, Granell A, Garcia-Brunton J, Badenes M, Rios G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52 es_ES
dc.description.references Sakamoto T, Bonnin E, Thibault JF (2003) A new approach for studying interaction of the polygalacturonase-inhibiting proteins with pectins. Biochim Biophys Acta (BBA) 1621:280–284. doi: 10.1016/S0304-4165(03)00093-X es_ES
dc.description.references Sanchez G, Venegas-Caleron M, Salas J, Monforte A, Badenes M, Granell A (2013) An integrative "omics" approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics 14:343 es_ES
dc.description.references Sánchez G, Besada C, Badenes ML, Monforte AJ, Granell A (2012) A non-targeted approach unravels the volatile network in peach fruit. PLoS One 7:e38992. doi: 10.1371/journal.pone.0038992 es_ES
dc.description.references Shima Y et al (2014) Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis. Biosci Biotechnol Biochem 78:231–237. doi: 10.1080/09168451.2014.878221 es_ES
dc.description.references Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48:1148–1158. doi: 10.1093/pcp/pcm088 es_ES
dc.description.references Tacken E et al (2010) The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. Plant Physiol 153:294–305. doi: 10.1104/pp.109.151092 es_ES
dc.description.references Tadiello A et al (2016) On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening. BMC Plant Biol 16:1–17. doi: 10.1186/s12870-016-0730-7 es_ES
dc.description.references Tatsuki M et al (2013) Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). J Exp Bot. doi: 10.1093/jxb/ers381 es_ES
dc.description.references Thain SC et al (2004) Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiol 136:3751–3761. doi: 10.1104/pp.104.042523 es_ES
dc.description.references Tonutti P, Bonghi C, Ruperti B, Tornielli GB, Ramina A (1997) Ethylene evolution and 1-aminocyclopropane-1-carboxylate oxidase gene expression during early development and ripening of peach fruit. J Am Soc Hortic Sci 122:642–647 es_ES
dc.description.references Trainotti L, Zanin D, Casadoro G (2003) A cell wall-oriented genomic approach reveals a new and unexpected complexity of the softening in peaches. J Exp Bot 54:1821–1832 es_ES
dc.description.references Trainotti L, Tadiello A, Casadoro G (2007) The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot 58:3299–3308. doi: 10.1093/jxb/erm178 es_ES
dc.description.references Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Nat Acad Sci 98:5116–5121. doi: 10.1073/pnas.091062498 es_ES
dc.description.references Vincken JP, Schols HA, Oomen RJFJ, McCann MC, Ulvskov P, Voragen AGJ, Visser RGF (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789. doi: 10.1104/pp.103.022350 es_ES
dc.description.references Vizoso P et al (2009) Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics 10:423 es_ES
dc.description.references Von Mollendorf LJ (1987) Woolliness in peaches and nectarines: a review. 1. Maturity and external factors. Hortic Sci 5:1–3 es_ES
dc.description.references Wang K et al (2013) The metabolism of soluble carbohydrates related to chilling injury in peach fruit exposed to cold stress. Postharvest Biol Technol 86:53–61. doi: 10.1016/j.postharvbio.2013.06.020 es_ES
dc.description.references Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147:1199–1211. doi: 10.1104/pp.108.117812 es_ES
dc.description.references Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27 es_ES
dc.description.references Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J Exp Bot 62:3481–3488. doi: 10.1093/jxb/err028 es_ES
dc.description.references Zhang C, Tian S (2009) Crucial contribution of membrane lipids’ unsaturation to acquisition of chilling-tolerance in peach fruit stored at 0 °C. Food Chem 115:405–411. doi: 10.1016/j.foodchem.2008.12.021 es_ES
dc.description.references Zhang C, Ding Z, Xu X, Wang Q, Qin G, Tian S (2010) Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury. Amino Acids 39:181–194. doi: 10.1007/s00726-009-0397-6 es_ES
dc.description.references Zhang B, Xi WP, Wei WW, Shen JJ, Ferguson I, Chen KS (2011) Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf-life of peach fruit. Postharvest Biol Technol 60:7–16. doi: 10.1016/j.postharvbio.2010.09.012 es_ES
dc.description.references Zhao D, Shen L, Fan B, Yu M, Zheng Y, Lv S, Sheng J (2009) Ethylene and cold participate in the regulation of LeCBF1 gene expression in postharvest tomato fruits. FEBS Lett 583:3329–3334. doi: 10.1016/j.febslet.2009.09.029S0014-5793(09)00717-0 es_ES
dc.description.references Zhong S et al (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat. Biotech 31:154–159. doi: 10.1038/nbt.2462 . http://www.nature.com/nbt/journal/v31/n2/abs/nbt.2462.html#supplementary-information es_ES
dc.description.references Zhou HW, Dong L, Ben-Arie R, Lurie S (2001) The role of ethylene in the prevention of chilling injury in nectarines. J Plant Physiol 158:55–61. doi: 10.1078/0176-1617-00126 es_ES
dc.description.references Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z (2014) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55:119–135. doi: 10.1093/pcp/pct162 es_ES
dc.description.references Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P (2008) Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP. J Exp Bot 59:2781–2791. doi: 10.1093/jxb/ern136 es_ES
dc.description.references Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J. doi: 10.1111/pbi.12559 es_ES


This item appears in the following Collection(s)

Show simple item record