dc.contributor.author |
Pons Puig, Clara
|
es_ES |
dc.contributor.author |
Marti, Cristina
|
es_ES |
dc.contributor.author |
Forment Millet, José Javier
|
es_ES |
dc.contributor.author |
Crisosto, CH
|
es_ES |
dc.contributor.author |
Dandekar, A
|
es_ES |
dc.contributor.author |
Granell Richart, Antonio
|
es_ES |
dc.date.accessioned |
2018-05-21T04:22:11Z |
|
dc.date.available |
2018-05-21T04:22:11Z |
|
dc.date.issued |
2016 |
es_ES |
dc.identifier.issn |
0167-4412 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/102311 |
|
dc.description.abstract |
[EN] Peach fruits subjected to prolonged cold storage (CS) to delay decay and over-ripening often develop a form of chilling injury (CI) called mealiness/woolliness (WLT), a flesh textural disorder characterized by lack of juiciness. Transcript profiles were analyzed after different lengths of CS and subsequent shelf life ripening (SLR) in pools of fruits from siblings of the Pop-DG population with contrasting sensitivity to develop WLT. This was followed by quantitative PCR on pools and individual lines of the Pop-DG population to validate and extend the microarray results. Relative tolerance to WLT development during SLR was related to the fruit's ability to recover from cold and the reactivation of normal ripening, processes that are probably regulated by transcription factors involved in stress protection, stress recovery and induction of ripening. Furthermore, our results showed that altered ripening in WLT fruits during shelf life is probably due, in part, to cold-induced desynchronization of the ripening program involving ethylene and auxin hormonal regulation of metabolism and cell wall. In addition, we found strong correlation between expression of RNA translation and protein assembly genes and the visual injury symptoms. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer-Verlag |
es_ES |
dc.relation.ispartof |
Plant Molecular Biology |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Chilling injury |
es_ES |
dc.subject |
Mealiness/woolliness |
es_ES |
dc.subject |
Peach |
es_ES |
dc.subject |
Ripening |
es_ES |
dc.subject |
Fruit |
es_ES |
dc.subject.classification |
BIOQUIMICA Y BIOLOGIA MOLECULAR |
es_ES |
dc.title |
A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1007/s11103-016-0526-z |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes |
es_ES |
dc.description.bibliographicCitation |
Pons Puig, C.; Marti, C.; Forment Millet, JJ.; Crisosto, C.; Dandekar, A.; Granell Richart, A. (2016). A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage. Plant Molecular Biology. 92(4-5):483-503. doi:10.1007/s11103-016-0526-z |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1007/s11103-016-0526-z |
es_ES |
dc.description.upvformatpinicio |
483 |
es_ES |
dc.description.upvformatpfin |
503 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
92 |
es_ES |
dc.description.issue |
4-5 |
es_ES |
dc.relation.pasarela |
S\331629 |
es_ES |
dc.description.references |
Abeles FB (1968) Role of RNA and protein synthesis in abscission. Plant Physiol 43:1577–1586 |
es_ES |
dc.description.references |
Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129. doi: 10.1105/tpc.108.058941 |
es_ES |
dc.description.references |
Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152. doi: 10.1126/science.284.5423.2148 |
es_ES |
dc.description.references |
Andersson A et al (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24 |
es_ES |
dc.description.references |
Arsovski AA, Popma, Haughn GW, Carpita NC, McCann MC, Western TL (2009) AtBXL1 encodes a bifunctional β-d-xylosidase/α-l-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells. Plant Physiol 150:1219–1234. doi: 10.1104/pp.109.138388 |
es_ES |
dc.description.references |
Ay N, Janack B, Humbeck K (2014) Epigenetic control of plant senescence and linked processes. J Exp Bot 65:3875–3887. doi: 10.1093/jxb/eru132 |
es_ES |
dc.description.references |
Barry CS, Llop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986 |
es_ES |
dc.description.references |
Begheldo M, Manganaris GA, Bonghi C, Tonutti P (2008) Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony Hard peaches. Postharvest Biol Technol 48:8–8. doi: 10.1016/j.postharvbio.2007.09.023 |
es_ES |
dc.description.references |
Bemer M et al (2012) The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell Online 24:4437–4451. doi: 10.1105/tpc.112.103283 |
es_ES |
dc.description.references |
Ben-Arie R, Sonego L (1980) Pectolytic enzyme activity involved in woolly breakdown of stored peaches. Phytochem 19:2553–2555. doi: 10.1016/S0031-9422(00)83917-5 |
es_ES |
dc.description.references |
Borsani J et al (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823–1837. doi: 10.1093/jxb/erp055 |
es_ES |
dc.description.references |
Bouton S et al (2002) QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14:2577–2590. doi: 10.1105/tpc.004259 |
es_ES |
dc.description.references |
Brummell DA, Dal Cin V, Crisosto CH, Labavitch JM (2004a) Cell wall metabolism during maturation, ripening and senescence of peach fruit. J Exp Bot 55:2029–2039. doi: 10.1093/jxb/erh227erh227 |
es_ES |
dc.description.references |
Brummell DA, Dal Cin V, Lurie S, Crisosto CH, Labavitch JM (2004b) Cell wall metabolism during the development of chilling injury in cold-stored peach fruit: association of mealiness with arrested disassembly of cell wall pectins. J Exp Bot 55:2041–2052. doi: 10.1093/jxb/erh228erh228 |
es_ES |
dc.description.references |
Buchanan CD et al (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720. doi: 10.1007/s11103-005-7876-2 |
es_ES |
dc.description.references |
Buescher RW, Furmanski RJ (1978) Role of pectinesterase and polygalacturonase in the formation of woolliness in peaches. J Food Sci 43:264–266. doi: 10.1111/j.1365-2621.1978.tb09788.x |
es_ES |
dc.description.references |
Campos-Vargas R et al (2006) Seasonal variation in the development of chilling injury in ’O’Henry’ peaches. Scientia Hortic 110:79–83 |
es_ES |
dc.description.references |
Cao S, Ye M, Jiang S (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24:683–690. doi: 10.1007/s00299-005-0061-x |
es_ES |
dc.description.references |
Celesnik H, Ali GS, Robison FM, Reddy ASN (2013) Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time. Biol Open 2:424–431. doi: 10.1242/bio.20133764 |
es_ES |
dc.description.references |
Corbacho J, Romojaro F, Pech J-C, Latché A, Gomez-Jimenez MC (2013) Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis. PLoS One 8:e58363. doi: 10.1371/journal.pone.0058363 |
es_ES |
dc.description.references |
Crisosto C, Mitchell F, Ju Z (1999) Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience 34:1116–1118 |
es_ES |
dc.description.references |
Dagar A et al (2013) Comparative transcript profiling of a peach and its nectarine mutant at harvest reveals differences in gene expression related to storability. Tree Genet Genom 9:223–235. doi: 10.1007/s11295-012-0549-9 |
es_ES |
dc.description.references |
Dardick C, Callahan A, Chiozzotto R, Schaffer R, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13 |
es_ES |
dc.description.references |
De Godoy F et al (2013) Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot 64:2449–2466. doi: 10.1093/jxb/ert106 |
es_ES |
dc.description.references |
Del Campillo E, Lewis LN (1992) Identification and kinetics of accumulation of proteins induced by ethylene in bean abscission zones. Plant Physiol 98:955–961 |
es_ES |
dc.description.references |
Dhanapal AP, Martínez-García PJ, Gradziel, Crisosto CH (2012) First genetic linkage map of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) fruit with SSR and SNP markers. J Plant Sci Mol Breeding 1. doi: 10.7243/2050-2389-1-3 |
es_ES |
dc.description.references |
Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984. doi: 10.1105/tpc.108.063958 |
es_ES |
dc.description.references |
Dong L, Zhou H-W, Sonego L, Lers A, Lurie S (2001) Ethylene involvement in the cold storage disorder of ‘Flavortop’ nectarine. Postharvest Biol Technol 23:105–115. doi: 10.1016/S0925-5214(01)00106-5 |
es_ES |
dc.description.references |
El-Sharkawy I, Kim WS, Jayasankar S, Svircev AM, Brown DC (2008) Differential regulation of four members of the ACC synthase gene family in plum. J Exp Bot 59:2009–2027. doi: 10.1093/jxb/ern056ern056 |
es_ES |
dc.description.references |
Eriksson EM et al (2004) Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136:4184–4197. doi: 10.1104/pp.104.045765 |
es_ES |
dc.description.references |
Falara V, Manganaris G, Ziliotto F, Manganaris A, Bonghi C, Ramina A, Kanellis A (2011) A ß-d-xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance. Funct Int Genom 11:357–368. doi: 10.1007/s10142-010-0204-1 |
es_ES |
dc.description.references |
Farrona S et al (2011) Brahma is required for proper expression of the floral repressor FLC in Arabidopsis. PLoS One 6:e17997. doi: 10.1371/journal.pone.0017997 |
es_ES |
dc.description.references |
Feng J et al (2015) SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Mol Plant 8:1038–1052. doi: 10.1016/j.molp.2015.01.011 |
es_ES |
dc.description.references |
Fernández-Trujillo JP, Cano A, Artés F (1998) Physiological changes in peaches related to chilling injury and ripening. Postharvest Biol Technol 13:109–119. doi: 10.1016/S0925-5214(98)00006-4 |
es_ES |
dc.description.references |
Fishman ML, Levaj B, Gillespie D, Scorza R (1993) Changes in the physico-chemical properties of peach fruit pectin during on-tree ripening and storage. J Am Soc Hortic Sci 118:343–349 |
es_ES |
dc.description.references |
Fornara F et al (2015) The GI–CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. Plant J 81:695–706. doi: 10.1111/tpj.12759 |
es_ES |
dc.description.references |
Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P (2006) Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol 170:739–752. doi: 10.1111/j.1469-8137.2006.01705.x |
es_ES |
dc.description.references |
Franssen SU et al (2011) Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc Nat Acad Sci 108:19276–19281. doi: 10.1073/pnas.1107680108 |
es_ES |
dc.description.references |
Fraser PD, Bramley P, Seymour GB (2001) Effect of the Cnr mutation on carotenoid formation during tomato fruit ripening. Phytochem 58:75–79 |
es_ES |
dc.description.references |
Fujisawa M et al (2014) Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell. doi: 10.1105/tpc.113.119453 |
es_ES |
dc.description.references |
Gille S, Pauly M (2012) O-acetylation of plant cell wall polysaccharides. Front Plant Sci 3:12. doi: 10.3389/fpls.2012.00012 |
es_ES |
dc.description.references |
Gilmour S, Zarka D, Stockinger E, Salazar M, Houghton J, Thomashow M (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442 |
es_ES |
dc.description.references |
Gonzalez-Aguero M et al (2008) Identification of woolliness response genes in peach fruit after post-harvest treatments. J Exp Bot 59:1973–1986 |
es_ES |
dc.description.references |
Hopkins MT, Lampi Y, Wang T-W, Liu Z, Thompson JE (2008) Eukaryotic translation initiation factor 5A is involved in pathogen-induced cell death and development of disease symptoms in Arabidopsis. Plant Physiol 148:479–489. doi: 10.1104/pp.108.118869 |
es_ES |
dc.description.references |
Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626. doi: 10.1104/pp.006783 |
es_ES |
dc.description.references |
Huang XS, Wang W, Zhang Q, Liu JH (2013) A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol 162:1178–1194. doi: 10.1104/pp.112.210740 |
es_ES |
dc.description.references |
Huang XS et al (2015) ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase. J Exp Bot. doi: 10.1093/jxb/erv138 |
es_ES |
dc.description.references |
Humbeck K (2013) Epigenetic and small RNA regulation of senescence. Plant Mol Biol 82:529–537. doi: 10.1007/s11103-012-0005-0 |
es_ES |
dc.description.references |
Jaglo-Ottosen K, Gilmour S, Zarka D, Schabenberger O, Thomashow M (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106 |
es_ES |
dc.description.references |
Kader AA, Mitchell FG (1989) Maturity and quality. In: James H., LaRue RSJ (ed) Peaches, plums, and nectarines: growing and handling for fresh market Vol Publication No. 3331. cooperative extension. University of California, Division of Agriculture and Natural Resources, Oakland, CA, pp 191–196 |
es_ES |
dc.description.references |
Kalberer SR, Wisniewski M, Arora R (2006) Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci 171:3–16. doi: 10.1016/j.plantsci.2006.02.013 |
es_ES |
dc.description.references |
Kim HY, Farcuh M, Cohen Y, Crisosto C, Sadka A, Blumwald E (2015) Non-climacteric ripening and sorbitol homeostasis in plum fruits. Plant Sci 231:30–39. doi: 10.1016/j.plantsci.2014.11.002 |
es_ES |
dc.description.references |
Kodaira KS et al (2011) Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiol 157:742–756. doi: 10.1104/pp.111.182683 |
es_ES |
dc.description.references |
Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350. doi: 10.1046/j.1365-3040.2000.00560.x |
es_ES |
dc.description.references |
Lauxmann MA et al (2014) Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit. Plant Cell Environ 37:601–616. doi: 10.1111/pce.12181 |
es_ES |
dc.description.references |
Leboeuf E, Guillon F, Thoiron S, Lahaye M (2005) Biochemical and immunohistochemical analysis of pectic polysaccharides in the cell walls of Arabidopsis mutant QUASIMODO 1 suspension-cultured cells: implications for cell adhesion. J Exp Bot 56:3171–3182. doi: 10.1093/jxb/eri314 |
es_ES |
dc.description.references |
Lester D, Speirs J, Orr G, Brady C (1994) Peach (Prunus persica) endopolygalacturonase cDNA isolation and mRNA analysis in melting and nonmelting peach cultivars. Plant Physiol 105:225–231 |
es_ES |
dc.description.references |
Lildballe DL, Pedersen DS, Kalamajka R, Emmersen J, Houben A, Grasser KD (2008) The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis. J Mol Biol 384:9–21. doi: 10.1016/j.jmb.2008.09.014 |
es_ES |
dc.description.references |
Liners F, Gaspar T, Van Cutsem P (1994) Acetyl- and methyl-esterification of pectins of friable and compact sugar-beet calli: consequences for intercellular adhesion. Planta 192:545–556. doi: 10.1007/bf00203593 |
es_ES |
dc.description.references |
Liu Z et al (2008) Modulation of eIF5A1 expression alters xylem abundance in Arabidopsis thaliana. J Exp Bot 59:939–950. doi: 10.1093/jxb/ern017 |
es_ES |
dc.description.references |
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408. doi: 10.1006/meth.2001.1262 |
es_ES |
dc.description.references |
Lombardo VA et al (2011) Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol 157:1696–1710. doi: 10.1104/pp.111.186064 |
es_ES |
dc.description.references |
Lovisetto A, Guzzo F, Tadiello A, Confortin E, Pavanello A, Botton A, Casadoro G (2013) Characterization of a bZIP gene highly expressed during ripening of the peach fruit. Plant Physiol Biochem 70:462–470. doi: 10.1016/j.plaphy.2013.06.014 |
es_ES |
dc.description.references |
Lurie S, Crisosto C (2005) Chilling injury in peach and nectarine. Postharvest Biol Technol 37:195–208 |
es_ES |
dc.description.references |
Lurie S, Levin A, Greve LC, Labavitch JM (1994) Pectic polymer changes in nectarines during normal and abnormal ripening. Phytochem 36:11–17. doi: 10.1016/S0031-9422(00)97003-1 |
es_ES |
dc.description.references |
Lurie S, Zhou HW, Lers A, Sonego L, Alexandrov S, Shomer I (2003) Study of pectin esterase and changes in pectin methylation during normal and abnormal peach ripening. Physiol Plant 119:287–294. doi: 10.1034/j.1399-3054.2003.00178.x |
es_ES |
dc.description.references |
Luza JG, Van Gorsel R, Polito VS, Kader AA (1992) Chilling injury in peaches: a cytochemical and ultrastructural cell wall study. J Am Soc Hortic Sci 117:114–118 |
es_ES |
dc.description.references |
Manganaris G, Rasori A, Bassi D, Geuna F, Ramina A, Tonutti P, Bonghi C (2011) Comparative transcript profiling of apricot (Prunus armeniaca L.) fruit development and on-tree ripening. Tree Genet Genom 7:609–616. doi: 10.1007/s11295-010-0360-4 |
es_ES |
dc.description.references |
Manning K et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952. doi: 10.1038/ng1841 |
es_ES |
dc.description.references |
Mlynárová L, Nap JP, Bisseling T (2007) The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J 51:874–885. doi: 10.1111/j.1365-313X.2007.03185.x |
es_ES |
dc.description.references |
Mouille G et al (2007) Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant J 50:605–614. doi: 10.1111/j.1365-313X.2007.03086.x |
es_ES |
dc.description.references |
Muñoz-Robredo P, Rubio P, Infante R, Campos-Vargas R, Manríquez D, González-Agüero M, Defilippi BG (2012) Ethylene biosynthesis in apricot: identification of a ripening-related 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene. Postharvest Biol Technol 63:85–90. doi: 10.1016/j.postharvbio.2011.09.001 |
es_ES |
dc.description.references |
Nakai Y, Fujiwara S, Kubo Y, Sato MH (2013) Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis. Plant Signal Behav 8:e23358. doi: 10.4161/psb.23358 |
es_ES |
dc.description.references |
Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulieres C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63. doi: 10.1111/j.1467-7652.2010.00530.xPBI530 |
es_ES |
dc.description.references |
Nilo R et al (2010) Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomics 11:43. doi: 10.1186/1471-2164-11-43 |
es_ES |
dc.description.references |
Ning YQ et al (2015) Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res. doi: 10.1093/nar/gku1382 |
es_ES |
dc.description.references |
Nunes C et al (2013) The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation. Plant Physiol 162:1720–1732. doi: 10.1104/pp.113.220657 |
es_ES |
dc.description.references |
Obenland DM, Crisosto CH, Rose JKC (2003) Expansin protein levels decline with the development of mealiness in peaches. Postharvest Biol Technol 29:11–18. doi: 10.1016/S0925-5214(02)00245-4 |
es_ES |
dc.description.references |
Ogundiwin E et al (2008) Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol 68:379–397 |
es_ES |
dc.description.references |
Ogundiwin EA, Peace CP, Gradziel, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587. doi: 10.1186/1471-2164-10-587 |
es_ES |
dc.description.references |
Oono Y et al (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Int Genom 6:212–234. doi: 10.1007/s10142-005-0014-z |
es_ES |
dc.description.references |
Orfila C et al (2001) Altered middle lamella homogalacturonan and disrupted deposition of (1–>5)-alpha-L-arabinan in the pericarp of Cnr, a ripening mutant of tomato. Plant Physiol 126:210–221 |
es_ES |
dc.description.references |
Orfila C, Huisman MM, Willats WG, Van Alebeek GJ, Schols HA, Seymour GB, Knox JP (2002) Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening. Planta 215:440–447. doi: 10.1007/s00425-002-0753-1 |
es_ES |
dc.description.references |
Orr G, Brady C (1993) Relationship of endopolygalacturonase activity to fruit softening in a freestone peach. Postharvest Biol Technol 3:121–130. doi: 10.1016/0925-5214(93)90004-M |
es_ES |
dc.description.references |
Pandey N et al (2013) CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics 14:216 |
es_ES |
dc.description.references |
Pavez L, Hödar C, Olivares F, González M, Cambiazo V (2013) Effects of postharvest treatments on gene expression in Prunus persica fruit: normal and altered ripening. Postharvest Biol Technol 75:125–134. doi: 10.1016/j.postharvbio.2012.08.002 |
es_ES |
dc.description.references |
Pavlidis P, Noble WS (2003) Matrix2png: a utility for visualizing matrix data. Bioinformatics 19:295–296. doi: 10.1093/bioinformatics/19.2.295 |
es_ES |
dc.description.references |
Peace C, Crisosto C, Gradziel T (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breeding 16:21–31 |
es_ES |
dc.description.references |
Polashock JJ, Arora R, Peng Y, Naik D, Rowland LJ (2010) Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J Am Soc Hortic Sci 135:40–48 |
es_ES |
dc.description.references |
Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A (2014) A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response. PLoS One 9:e90706. doi: 10.1371/journal.pone.0090706 |
es_ES |
dc.description.references |
Pons C et al (2015) Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms. BMC Genomics 16:245 |
es_ES |
dc.description.references |
Pressey R, Avants J (1978) Differences in polygalacteronase composition of clingstone and freestone peaches. J Food Sci 43:1415–1423 |
es_ES |
dc.description.references |
Rajasundaram D, Selbig J, Persson S, Klie S (2014) Co-ordination and divergence of cell-specific transcription and translation of genes in Arabidopsis root cells. Annal Bot. doi: 10.1093/aob/mcu151 |
es_ES |
dc.description.references |
Rapacz M (2002) Cold-deacclimation of oilseed rape (Brassica napus var. oleifera) in response to fluctuating temperatures and photoperiod. Annal Bot 89:543–549. doi: 10.1093/aob/mcf090 |
es_ES |
dc.description.references |
Romeu J, Monforte A, Sanchez G, Granell A, Garcia-Brunton J, Badenes M, Rios G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52 |
es_ES |
dc.description.references |
Sakamoto T, Bonnin E, Thibault JF (2003) A new approach for studying interaction of the polygalacturonase-inhibiting proteins with pectins. Biochim Biophys Acta (BBA) 1621:280–284. doi: 10.1016/S0304-4165(03)00093-X |
es_ES |
dc.description.references |
Sanchez G, Venegas-Caleron M, Salas J, Monforte A, Badenes M, Granell A (2013) An integrative "omics" approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics 14:343 |
es_ES |
dc.description.references |
Sánchez G, Besada C, Badenes ML, Monforte AJ, Granell A (2012) A non-targeted approach unravels the volatile network in peach fruit. PLoS One 7:e38992. doi: 10.1371/journal.pone.0038992 |
es_ES |
dc.description.references |
Shima Y et al (2014) Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis. Biosci Biotechnol Biochem 78:231–237. doi: 10.1080/09168451.2014.878221 |
es_ES |
dc.description.references |
Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48:1148–1158. doi: 10.1093/pcp/pcm088 |
es_ES |
dc.description.references |
Tacken E et al (2010) The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. Plant Physiol 153:294–305. doi: 10.1104/pp.109.151092 |
es_ES |
dc.description.references |
Tadiello A et al (2016) On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening. BMC Plant Biol 16:1–17. doi: 10.1186/s12870-016-0730-7 |
es_ES |
dc.description.references |
Tatsuki M et al (2013) Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). J Exp Bot. doi: 10.1093/jxb/ers381 |
es_ES |
dc.description.references |
Thain SC et al (2004) Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiol 136:3751–3761. doi: 10.1104/pp.104.042523 |
es_ES |
dc.description.references |
Tonutti P, Bonghi C, Ruperti B, Tornielli GB, Ramina A (1997) Ethylene evolution and 1-aminocyclopropane-1-carboxylate oxidase gene expression during early development and ripening of peach fruit. J Am Soc Hortic Sci 122:642–647 |
es_ES |
dc.description.references |
Trainotti L, Zanin D, Casadoro G (2003) A cell wall-oriented genomic approach reveals a new and unexpected complexity of the softening in peaches. J Exp Bot 54:1821–1832 |
es_ES |
dc.description.references |
Trainotti L, Tadiello A, Casadoro G (2007) The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot 58:3299–3308. doi: 10.1093/jxb/erm178 |
es_ES |
dc.description.references |
Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Nat Acad Sci 98:5116–5121. doi: 10.1073/pnas.091062498 |
es_ES |
dc.description.references |
Vincken JP, Schols HA, Oomen RJFJ, McCann MC, Ulvskov P, Voragen AGJ, Visser RGF (2003) If homogalacturonan were a side chain of rhamnogalacturonan I. Implications for cell wall architecture. Plant Physiol 132:1781–1789. doi: 10.1104/pp.103.022350 |
es_ES |
dc.description.references |
Vizoso P et al (2009) Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics 10:423 |
es_ES |
dc.description.references |
Von Mollendorf LJ (1987) Woolliness in peaches and nectarines: a review. 1. Maturity and external factors. Hortic Sci 5:1–3 |
es_ES |
dc.description.references |
Wang K et al (2013) The metabolism of soluble carbohydrates related to chilling injury in peach fruit exposed to cold stress. Postharvest Biol Technol 86:53–61. doi: 10.1016/j.postharvbio.2013.06.020 |
es_ES |
dc.description.references |
Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147:1199–1211. doi: 10.1104/pp.108.117812 |
es_ES |
dc.description.references |
Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27 |
es_ES |
dc.description.references |
Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J Exp Bot 62:3481–3488. doi: 10.1093/jxb/err028 |
es_ES |
dc.description.references |
Zhang C, Tian S (2009) Crucial contribution of membrane lipids’ unsaturation to acquisition of chilling-tolerance in peach fruit stored at 0 °C. Food Chem 115:405–411. doi: 10.1016/j.foodchem.2008.12.021 |
es_ES |
dc.description.references |
Zhang C, Ding Z, Xu X, Wang Q, Qin G, Tian S (2010) Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury. Amino Acids 39:181–194. doi: 10.1007/s00726-009-0397-6 |
es_ES |
dc.description.references |
Zhang B, Xi WP, Wei WW, Shen JJ, Ferguson I, Chen KS (2011) Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf-life of peach fruit. Postharvest Biol Technol 60:7–16. doi: 10.1016/j.postharvbio.2010.09.012 |
es_ES |
dc.description.references |
Zhao D, Shen L, Fan B, Yu M, Zheng Y, Lv S, Sheng J (2009) Ethylene and cold participate in the regulation of LeCBF1 gene expression in postharvest tomato fruits. FEBS Lett 583:3329–3334. doi: 10.1016/j.febslet.2009.09.029S0014-5793(09)00717-0 |
es_ES |
dc.description.references |
Zhong S et al (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat. Biotech 31:154–159. doi: 10.1038/nbt.2462 . http://www.nature.com/nbt/journal/v31/n2/abs/nbt.2462.html#supplementary-information |
es_ES |
dc.description.references |
Zhou HW, Dong L, Ben-Arie R, Lurie S (2001) The role of ethylene in the prevention of chilling injury in nectarines. J Plant Physiol 158:55–61. doi: 10.1078/0176-1617-00126 |
es_ES |
dc.description.references |
Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z (2014) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol 55:119–135. doi: 10.1093/pcp/pct162 |
es_ES |
dc.description.references |
Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P (2008) Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP. J Exp Bot 59:2781–2791. doi: 10.1093/jxb/ern136 |
es_ES |
dc.description.references |
Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J. doi: 10.1111/pbi.12559 |
es_ES |