Mostrar el registro sencillo del ítem
dc.contributor.author | Carbonell Olivares, Alberto | es_ES |
dc.contributor.editor | Carbonell Olivares, Alberto | es_ES |
dc.date.accessioned | 2018-05-22T09:03:36Z | |
dc.date.available | 2018-05-22T09:03:36Z | |
dc.date.issued | 2017-06-13 | |
dc.identifier.isbn | 978-1-4939-7165-7 | |
dc.identifier.isbn | 978-1-4939-7164-0 | |
dc.identifier.issn | 1064-3745 | |
dc.identifier.uri | http://hdl.handle.net/10251/102403 | |
dc.description.abstract | ARGONAUTE (AGO) proteins function in small RNA (sRNA)-based RNA silencing pathways to regulate gene expression and control invading nucleic acids. In posttranscriptional RNA silencing pathways, plant AGOs associate with sRNAs to interact with highly sequence-complementary target RNAs. Once the AGO–sRNA-target RNA ternary complex is formed, target RNA is typically repressed through AGO-mediated cleavage or through other cleavage-independent mechanisms. The universe of sRNAs associating with diverse plant AGOs has been determined though AGO immunoprecipitation (IP) and high-throughput sequencing of co-immunoprecipitated sRNAs. To better understand the biological functions of AGO–sRNA complexes, it is crucial to identify the repertoire of target RNAs they regulate. Here I present a detailed AGO–RNA IP followed by high-throughput sequencing (AGO RIP-Seq) methodology for the isolation of AGO ternary complexes from plant tissues and the high-throughput sequencing of AGO-bound target RNAs. In particular, the protocol describes the IP of slicer-deficient hemagglutinin (HA)-tagged AGO proteins expressed in plant tissues, the isolation of AGO-bound RNAs, and the generation of target RNA libraries for high-throughput sequencing. | es_ES |
dc.description.sponsorship | This work was supported by an Individual Fellowship from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 655841 to A.C. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer Link | es_ES |
dc.relation.ispartof | Plant Argonaute Proteins: Methods and Protocols | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | ARGONAUTE | es_ES |
dc.subject | RNA immunoprecipitation | es_ES |
dc.subject | High-throughput sequencing n | es_ES |
dc.subject | RIP-Seq | es_ES |
dc.subject | Small RNA | es_ES |
dc.subject | RNA-Seq | es_ES |
dc.subject | Library preparatio | es_ES |
dc.title | Immunoprecipitation and High–Throughput Sequencing of ARGONAUTE–Bound Target RNAs from Plants | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.identifier.doi | 10.1007/978-1-4939-7165-7_6 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/655841/EU/Genome-wide analysis of RNA and protein interacting profiles during a plant virus infection/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Carbonell Olivares, A. (2017). Immunoprecipitation and High–Throughput Sequencing of ARGONAUTE–Bound Target RNAs from Plants. En Plant Argonaute Proteins: Methods and Protocols. Springer Link. 93-112. https://doi.org/10.1007/978-1-4939-7165-7_6 | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/978-1-4939-7165-7_6 | es_ES |
dc.description.upvformatpinicio | 93 | es_ES |
dc.description.upvformatpfin | 112 | es_ES |
dc.identifier.eissn | 1940-6029 | |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Carbonell A, Carrington JC (2015) Antiviral roles of plant ARGONAUTES. Curr Opin Plant Biol 27:111–117. doi: 10.1016/j.pbi.2015.06.013 | es_ES |
dc.description.references | Fang X, Qi Y (2016) RNAi in plants: an Argonaute-centered view. Plant Cell 28(2):272–285. doi: 10.1105/tpc.15.00920 | es_ES |
dc.description.references | Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13(7):350–358. doi: 10.1016/j.tplants.2008.04.007 | es_ES |
dc.description.references | Mallory A, Vaucheret H (2010) Form, function, and regulation of ARGONAUTE proteins. Plant Cell 22(12):3879–3889. doi: 10.1105/tpc.110.080671 | es_ES |
dc.description.references | Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133(1):128–141. doi: 10.1016/j.cell.2008.02.033 | es_ES |
dc.description.references | Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133(1):116–127. doi: 10.1016/j.cell.2008.02.034 | es_ES |
dc.description.references | Zhang X, Niu D, Carbonell A, Wang A, Lee A, Tun V, Wang Z, Carrington JC, Chang CE, Jin H (2014) ARGONAUTE PIWI domain and microRNA duplex structure regulate small RNA sorting in Arabidopsis. Nat Commun 5:5468. doi: 10.1038/ncomms6468 | es_ES |
dc.description.references | Zhu H, Hu F, Wang R, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang X (2011) Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145(2):242–256. doi: 10.1016/j.cell.2011.03.024 | es_ES |
dc.description.references | Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49(4):493–500. doi: 10.1093/pcp/pcn043 | es_ES |
dc.description.references | Cuperus JT, Carbonell A, Fahlgren N, Garcia-Ruiz H, Burke RT, Takeda A, Sullivan CM, Gilbert SD, Montgomery TA, Carrington JC (2010) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17(8):997–1003. doi: 10.1038/nsmb.1866 | es_ES |
dc.description.references | Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009) Rice MicroRNA effector complexes and targets. Plant Cell 21(11):3421–3435. doi: 10.1105/tpc.109.070938 | es_ES |
dc.description.references | Carbonell A, Fahlgren N, Garcia-Ruiz H, Gilbert KB, Montgomery TA, Nguyen T, Cuperus JT, Carrington JC (2012) Functional analysis of three Arabidopsis ARGONAUTES using slicer-defective mutants. Plant Cell 24(9):3613–3629. doi: 10.1105/tpc.112.099945 | es_ES |
dc.description.references | Gilbert KB, Fahlgren N, Kasschau KD, Chapman EJ, Carrington JC, Carbonell A (2014) Preparation of multiplexed small RNA libraries from plants. Bio Protoc 4(21):e1275 | es_ES |
dc.description.references | Wang L, Si Y, Dedow LK, Shao Y, Liu P, Brutnell TP (2011) A low-cost library construction protocol and data analysis pipeline for Illumina-based strand-specific multiplex RNA-seq. PLoS One 6(10):e26426. doi: 10.1371/journal.pone.0026426 | es_ES |