- -

Barium titanate (BaTiO3) RF characterization for application in electro-optic modulators

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Barium titanate (BaTiO3) RF characterization for application in electro-optic modulators

Show full item record

Rosa Escutia, Á.; Tulli, D.; Castera-Molada, P.; Gutiérrez Campo, AM.; Griol Barres, A.; Baquero Escudero, M.; Vilquin, B.... (2017). Barium titanate (BaTiO3) RF characterization for application in electro-optic modulators. Optical Materials Express. 7(12):4328-4336. https://doi.org/10.1364/OME.7.004328

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/103235

Files in this item

Item Metadata

Title: Barium titanate (BaTiO3) RF characterization for application in electro-optic modulators
Author: Rosa Escutia, Álvaro Tulli, Domenico Castera-Molada, Pau Gutiérrez Campo, Ana María Griol Barres, Amadeu Baquero Escudero, Mariano Vilquin, Bertrand Eltes, Felix Abel, Stefan Fompeyrine, Jean Sanchis Kilders, Pablo
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Issued date:
Abstract:
[EN] Barium titanate (BaTiO3 or BTO) is currently one of the most promising ferroelectric materials for enabling Pockels modulation that is compatible with silicon photonic circuits. The relative permittivity of BTO has ...[+]
Subjects: Barium titanate , BTO , Characterization , Electro-optic modulator , Optical material , Photonics
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Optical Materials Express. (issn: 2159-3930 )
DOI: 10.1364/OME.7.004328
Publisher:
The Optical Society
Publisher version: https://doi.org/10.1364/OME.7.004328
Project ID:
info:eu-repo/grantAgreement/EC/FP7/619456/EU/Silicon CMOS compatible transition metal oxide technology for boosting highly integrated photonic devices with disruptive performance/
info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/
Thanks:
Financial support from European Commission under project FP7-ICT-2013-11-619456 SITOGA, and from TEC2016-76849-C2-2-R and NANOMET Conselleria de Educació, Cultura i Esport -PROMETEOII/2014 034 are acknowledged. Álvaro Rosa ...[+]
Type: Artículo

References

Hennings, D. (1987). Barium titanate based ceramic materials for dielectric use. International Journal of High Technology Ceramics, 3(2), 91-111. doi:10.1016/0267-3762(87)90031-2

Sengupta, L., & Sengupta, S. (1997). Novel ferroelectric materials for phased array antennas. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 44(4), 792-797. doi:10.1109/58.655193

De Flaviis, F., Alexopoulos, N. G., & Stafsudd, O. M. (1997). Planar microwave integrated phase-shifter design with high purity ferroelectric material. IEEE Transactions on Microwave Theory and Techniques, 45(6), 963-969. doi:10.1109/22.588610 [+]
Hennings, D. (1987). Barium titanate based ceramic materials for dielectric use. International Journal of High Technology Ceramics, 3(2), 91-111. doi:10.1016/0267-3762(87)90031-2

Sengupta, L., & Sengupta, S. (1997). Novel ferroelectric materials for phased array antennas. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 44(4), 792-797. doi:10.1109/58.655193

De Flaviis, F., Alexopoulos, N. G., & Stafsudd, O. M. (1997). Planar microwave integrated phase-shifter design with high purity ferroelectric material. IEEE Transactions on Microwave Theory and Techniques, 45(6), 963-969. doi:10.1109/22.588610

Zgonik, M., Bernasconi, P., Duelli, M., Schlesser, R., Günter, P., Garrett, M. H., … Wu, X. (1994). Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors ofBaTiO3crystals. Physical Review B, 50(9), 5941-5949. doi:10.1103/physrevb.50.5941

Reed, G. T., Mashanovich, G., Gardes, F. Y., & Thomson, D. J. (2010). Silicon optical modulators. Nature Photonics, 4(8), 518-526. doi:10.1038/nphoton.2010.179

Petraru, A., Schubert, J., Schmid, M., & Buchal, C. (2002). Ferroelectric BaTiO3 thin-film optical waveguide modulators. Applied Physics Letters, 81(8), 1375-1377. doi:10.1063/1.1498151

Tang, P., Towner, D. J., Hamano, T., Meier, A. L., & Wessels, B. W. (2004). Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator. Optics Express, 12(24), 5962. doi:10.1364/opex.12.005962

Tang, P., Meier, A. L., Towner, D. J., & Wessels, B. W. (2005). BaTiO_3 thin-film waveguide modulator with a low voltage–length product at near-infrared wavelengths of 098 and 155 µm. Optics Letters, 30(3), 254. doi:10.1364/ol.30.000254

Dicken, M. J., Sweatlock, L. A., Pacifici, D., Lezec, H. J., Bhattacharya, K., & Atwater, H. A. (2008). Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers. Nano Letters, 8(11), 4048-4052. doi:10.1021/nl802981q

Girouard, P., Liu, Z., Chen, P., Jeong, Y. K., Tu, Y., Ho, S.-T., & Wessels, B. W. (2016). Enhancement of the pockels effect in photonic crystal modulators through slow light. Optics Letters, 41(23), 5531. doi:10.1364/ol.41.005531

Abel, S., Stöferle, T., Marchiori, C., Rossel, C., Rossell, M. D., Erni, R., … Fompeyrine, J. (2013). A strong electro-optically active lead-free ferroelectric integrated on silicon. Nature Communications, 4(1). doi:10.1038/ncomms2695

Xiong, C., Pernice, W. H. P., Ngai, J. H., Reiner, J. W., Kumah, D., Walker, F. J., … Tang, H. X. (2014). Active Silicon Integrated Nanophotonics: Ferroelectric BaTiO3 Devices. Nano Letters, 14(3), 1419-1425. doi:10.1021/nl404513p

Abel, S., Stoferle, T., Marchiori, C., Caimi, D., Czornomaz, L., Stuckelberger, M., … Fompeyrine, J. (2016). A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning. Journal of Lightwave Technology, 34(8), 1688-1693. doi:10.1109/jlt.2015.2510282

Eltes, F., Caimi, D., Fallegger, F., Sousa, M., O’Connor, E., Rossell, M. D., … Abel, S. (2016). Low-Loss BaTiO3–Si Waveguides for Nonlinear Integrated Photonics. ACS Photonics, 3(9), 1698-1703. doi:10.1021/acsphotonics.6b00350

Hsu, M.-H. M., Marinelli, A., Merckling, C., Pantouvaki, M., Van Campenhout, J., Absil, P., & Van Thourhout, D. (2017). Orientation-dependent electro-optical response of BaTiO_3 on SrTiO_3-buffered Si(001) studied via spectroscopic ellipsometry. Optical Materials Express, 7(6), 2030. doi:10.1364/ome.7.002030

Rabiei, P., Ma, J., Khan, S., Chiles, J., & Fathpour, S. (2013). Heterogeneous lithium niobate photonics on silicon substrates. Optics Express, 21(21), 25573. doi:10.1364/oe.21.025573

Pernice, W. H. P., Xiong, C., Walker, F. J., & Tang, H. X. (2014). Design of a Silicon Integrated Electro-Optic Modulator Using Ferroelectric BaTiO3 Films. IEEE Photonics Technology Letters, 26(13), 1344-1347. doi:10.1109/lpt.2014.2322501

Hu, X., Cueff, S., Romeo, P. R., & Orobtchouk, R. (2015). Modeling the anisotropic electro-optic interaction in hybrid silicon-ferroelectric optical modulator. Optics Express, 23(2), 1699. doi:10.1364/oe.23.001699

Castera, P., Tulli, D., Gutierrez, A. M., & Sanchis, P. (2015). Influence of BaTiO_3 ferroelectric orientation for electro-optic modulation on silicon. Optics Express, 23(12), 15332. doi:10.1364/oe.23.015332

Castera, P., Gutierrez, A. M., Tulli, D., Cueff, S., Orobtchouk, R., Rojo Romeo, P., … Sanchis, P. (2016). Electro-Optical Modulation Based on Pockels Effect in BaTiO3With a Multi-Domain Structure. IEEE Photonics Technology Letters, 28(9), 990-993. doi:10.1109/lpt.2016.2522509

Salama, C. A. T., & Siciunas, E. (1972). Characteristics of rf Sputtered Barium Titanate Films on Silicon. Journal of Vacuum Science and Technology, 9(1), 91-96. doi:10.1116/1.1316695

Hayashi, T., Oji, N., & Maiwa, H. (1994). Film Thickness Dependence of Dielectric Properties ofBaTiO3Thin Films Prepared by Sol-Gel Method. Japanese Journal of Applied Physics, 33(Part 1, No. 9B), 5277-5280. doi:10.1143/jjap.33.5277

Hamano, T., Towner, D. J., & Wessels, B. W. (2003). Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range. Applied Physics Letters, 83(25), 5274-5276. doi:10.1063/1.1635967

McKee, R. A., Walker, F. J., Conner, J. R., Specht, E. D., & Zelmon, D. E. (1991). Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon. Applied Physics Letters, 59(7), 782-784. doi:10.1063/1.105341

Janezic, M. D., & Jargon, J. A. (1999). Complex permittivity determination from propagation constant measurements. IEEE Microwave and Guided Wave Letters, 9(2), 76-78. doi:10.1109/75.755052

Engen, G. F., & Hoer, C. A. (1979). Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer. IEEE Transactions on Microwave Theory and Techniques, 27(12), 987-993. doi:10.1109/tmtt.1979.1129778

Alferness, R. C. (1982). Waveguide Electrooptic Modulators. IEEE Transactions on Microwave Theory and Techniques, 30(8), 1121-1137. doi:10.1109/tmtt.1982.1131213

Chung, H., Chang, W. S. C., & Adler, E. L. (1991). Modeling and optimization of traveling-wave LiNbO/sub 3/ interferometric modulators. IEEE Journal of Quantum Electronics, 27(3), 608-617. doi:10.1109/3.81370

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record