- -

Barium titanate (BaTiO3) RF characterization for application in electro-optic modulators

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Barium titanate (BaTiO3) RF characterization for application in electro-optic modulators

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rosa Escutia, Álvaro es_ES
dc.contributor.author Tulli, Domenico es_ES
dc.contributor.author Castera-Molada, Pau es_ES
dc.contributor.author Gutiérrez Campo, Ana María es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Baquero Escudero, Mariano es_ES
dc.contributor.author Vilquin, Bertrand es_ES
dc.contributor.author Eltes, Felix es_ES
dc.contributor.author Abel, Stefan es_ES
dc.contributor.author Fompeyrine, Jean es_ES
dc.contributor.author Sanchis Kilders, Pablo es_ES
dc.date.accessioned 2018-06-02T04:21:46Z
dc.date.available 2018-06-02T04:21:46Z
dc.date.issued 2017 es_ES
dc.identifier.issn 2159-3930 es_ES
dc.identifier.uri http://hdl.handle.net/10251/103235
dc.description.abstract [EN] Barium titanate (BaTiO3 or BTO) is currently one of the most promising ferroelectric materials for enabling Pockels modulation that is compatible with silicon photonic circuits. The relative permittivity of BTO has been characterized in thin films deposited on a silicon-on-insulator (SOI) substrate. High values between 800 and 1600 have been estimated at 20 GHz. Furthermore, no substantial difference has been obtained by using BTO grown by molecular beam epitaxy and sputtering. The obtained permittivity has been used to properly design the RF electrodes for high-speed modulation in hybrid BTO/Si devices. Electrodes have been fabricated and the possibility of achieving modulation bandwidths up to 40 GHz has been demonstrated. The bandwidth is limited by the microwave propagation losses and, in this case, different losses have been measured depending on the BTO growth process. es_ES
dc.description.sponsorship Financial support from European Commission under project FP7-ICT-2013-11-619456 SITOGA, and from TEC2016-76849-C2-2-R and NANOMET Conselleria de Educació, Cultura i Esport -PROMETEOII/2014 034 are acknowledged. Álvaro Rosa also acknowledges the Spanish Ministry of Economy and Competitiveness for funding his grant.
dc.language Inglés es_ES
dc.publisher The Optical Society es_ES
dc.relation.ispartof Optical Materials Express es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject Barium titanate es_ES
dc.subject BTO es_ES
dc.subject Characterization es_ES
dc.subject Electro-optic modulator es_ES
dc.subject Optical material es_ES
dc.subject Photonics es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Barium titanate (BaTiO3) RF characterization for application in electro-optic modulators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OME.7.004328 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/619456/EU/Silicon CMOS compatible transition metal oxide technology for boosting highly integrated photonic devices with disruptive performance/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Rosa Escutia, Á.; Tulli, D.; Castera-Molada, P.; Gutiérrez Campo, AM.; Griol Barres, A.; Baquero Escudero, M.; Vilquin, B.... (2017). Barium titanate (BaTiO3) RF characterization for application in electro-optic modulators. Optical Materials Express. 7(12):4328-4336. https://doi.org/10.1364/OME.7.004328 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1364/OME.7.004328 es_ES
dc.description.upvformatpinicio 4328 es_ES
dc.description.upvformatpfin 4336 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\349606 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hennings, D. (1987). Barium titanate based ceramic materials for dielectric use. International Journal of High Technology Ceramics, 3(2), 91-111. doi:10.1016/0267-3762(87)90031-2 es_ES
dc.description.references Sengupta, L., & Sengupta, S. (1997). Novel ferroelectric materials for phased array antennas. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 44(4), 792-797. doi:10.1109/58.655193 es_ES
dc.description.references De Flaviis, F., Alexopoulos, N. G., & Stafsudd, O. M. (1997). Planar microwave integrated phase-shifter design with high purity ferroelectric material. IEEE Transactions on Microwave Theory and Techniques, 45(6), 963-969. doi:10.1109/22.588610 es_ES
dc.description.references Zgonik, M., Bernasconi, P., Duelli, M., Schlesser, R., Günter, P., Garrett, M. H., … Wu, X. (1994). Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors ofBaTiO3crystals. Physical Review B, 50(9), 5941-5949. doi:10.1103/physrevb.50.5941 es_ES
dc.description.references Reed, G. T., Mashanovich, G., Gardes, F. Y., & Thomson, D. J. (2010). Silicon optical modulators. Nature Photonics, 4(8), 518-526. doi:10.1038/nphoton.2010.179 es_ES
dc.description.references Petraru, A., Schubert, J., Schmid, M., & Buchal, C. (2002). Ferroelectric BaTiO3 thin-film optical waveguide modulators. Applied Physics Letters, 81(8), 1375-1377. doi:10.1063/1.1498151 es_ES
dc.description.references Tang, P., Towner, D. J., Hamano, T., Meier, A. L., & Wessels, B. W. (2004). Electrooptic modulation up to 40 GHz in a barium titanate thin film waveguide modulator. Optics Express, 12(24), 5962. doi:10.1364/opex.12.005962 es_ES
dc.description.references Tang, P., Meier, A. L., Towner, D. J., & Wessels, B. W. (2005). BaTiO_3 thin-film waveguide modulator with a low voltage–length product at near-infrared wavelengths of 098 and 155 µm. Optics Letters, 30(3), 254. doi:10.1364/ol.30.000254 es_ES
dc.description.references Dicken, M. J., Sweatlock, L. A., Pacifici, D., Lezec, H. J., Bhattacharya, K., & Atwater, H. A. (2008). Electrooptic Modulation in Thin Film Barium Titanate Plasmonic Interferometers. Nano Letters, 8(11), 4048-4052. doi:10.1021/nl802981q es_ES
dc.description.references Girouard, P., Liu, Z., Chen, P., Jeong, Y. K., Tu, Y., Ho, S.-T., & Wessels, B. W. (2016). Enhancement of the pockels effect in photonic crystal modulators through slow light. Optics Letters, 41(23), 5531. doi:10.1364/ol.41.005531 es_ES
dc.description.references Abel, S., Stöferle, T., Marchiori, C., Rossel, C., Rossell, M. D., Erni, R., … Fompeyrine, J. (2013). A strong electro-optically active lead-free ferroelectric integrated on silicon. Nature Communications, 4(1). doi:10.1038/ncomms2695 es_ES
dc.description.references Xiong, C., Pernice, W. H. P., Ngai, J. H., Reiner, J. W., Kumah, D., Walker, F. J., … Tang, H. X. (2014). Active Silicon Integrated Nanophotonics: Ferroelectric BaTiO3 Devices. Nano Letters, 14(3), 1419-1425. doi:10.1021/nl404513p es_ES
dc.description.references Abel, S., Stoferle, T., Marchiori, C., Caimi, D., Czornomaz, L., Stuckelberger, M., … Fompeyrine, J. (2016). A Hybrid Barium Titanate–Silicon Photonics Platform for Ultraefficient Electro-Optic Tuning. Journal of Lightwave Technology, 34(8), 1688-1693. doi:10.1109/jlt.2015.2510282 es_ES
dc.description.references Eltes, F., Caimi, D., Fallegger, F., Sousa, M., O’Connor, E., Rossell, M. D., … Abel, S. (2016). Low-Loss BaTiO3–Si Waveguides for Nonlinear Integrated Photonics. ACS Photonics, 3(9), 1698-1703. doi:10.1021/acsphotonics.6b00350 es_ES
dc.description.references Hsu, M.-H. M., Marinelli, A., Merckling, C., Pantouvaki, M., Van Campenhout, J., Absil, P., & Van Thourhout, D. (2017). Orientation-dependent electro-optical response of BaTiO_3 on SrTiO_3-buffered Si(001) studied via spectroscopic ellipsometry. Optical Materials Express, 7(6), 2030. doi:10.1364/ome.7.002030 es_ES
dc.description.references Rabiei, P., Ma, J., Khan, S., Chiles, J., & Fathpour, S. (2013). Heterogeneous lithium niobate photonics on silicon substrates. Optics Express, 21(21), 25573. doi:10.1364/oe.21.025573 es_ES
dc.description.references Pernice, W. H. P., Xiong, C., Walker, F. J., & Tang, H. X. (2014). Design of a Silicon Integrated Electro-Optic Modulator Using Ferroelectric BaTiO3 Films. IEEE Photonics Technology Letters, 26(13), 1344-1347. doi:10.1109/lpt.2014.2322501 es_ES
dc.description.references Hu, X., Cueff, S., Romeo, P. R., & Orobtchouk, R. (2015). Modeling the anisotropic electro-optic interaction in hybrid silicon-ferroelectric optical modulator. Optics Express, 23(2), 1699. doi:10.1364/oe.23.001699 es_ES
dc.description.references Castera, P., Tulli, D., Gutierrez, A. M., & Sanchis, P. (2015). Influence of BaTiO_3 ferroelectric orientation for electro-optic modulation on silicon. Optics Express, 23(12), 15332. doi:10.1364/oe.23.015332 es_ES
dc.description.references Castera, P., Gutierrez, A. M., Tulli, D., Cueff, S., Orobtchouk, R., Rojo Romeo, P., … Sanchis, P. (2016). Electro-Optical Modulation Based on Pockels Effect in BaTiO3With a Multi-Domain Structure. IEEE Photonics Technology Letters, 28(9), 990-993. doi:10.1109/lpt.2016.2522509 es_ES
dc.description.references Salama, C. A. T., & Siciunas, E. (1972). Characteristics of rf Sputtered Barium Titanate Films on Silicon. Journal of Vacuum Science and Technology, 9(1), 91-96. doi:10.1116/1.1316695 es_ES
dc.description.references Hayashi, T., Oji, N., & Maiwa, H. (1994). Film Thickness Dependence of Dielectric Properties ofBaTiO3Thin Films Prepared by Sol-Gel Method. Japanese Journal of Applied Physics, 33(Part 1, No. 9B), 5277-5280. doi:10.1143/jjap.33.5277 es_ES
dc.description.references Hamano, T., Towner, D. J., & Wessels, B. W. (2003). Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range. Applied Physics Letters, 83(25), 5274-5276. doi:10.1063/1.1635967 es_ES
dc.description.references McKee, R. A., Walker, F. J., Conner, J. R., Specht, E. D., & Zelmon, D. E. (1991). Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon. Applied Physics Letters, 59(7), 782-784. doi:10.1063/1.105341 es_ES
dc.description.references Janezic, M. D., & Jargon, J. A. (1999). Complex permittivity determination from propagation constant measurements. IEEE Microwave and Guided Wave Letters, 9(2), 76-78. doi:10.1109/75.755052 es_ES
dc.description.references Engen, G. F., & Hoer, C. A. (1979). Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer. IEEE Transactions on Microwave Theory and Techniques, 27(12), 987-993. doi:10.1109/tmtt.1979.1129778 es_ES
dc.description.references Alferness, R. C. (1982). Waveguide Electrooptic Modulators. IEEE Transactions on Microwave Theory and Techniques, 30(8), 1121-1137. doi:10.1109/tmtt.1982.1131213 es_ES
dc.description.references Chung, H., Chang, W. S. C., & Adler, E. L. (1991). Modeling and optimization of traveling-wave LiNbO/sub 3/ interferometric modulators. IEEE Journal of Quantum Electronics, 27(3), 608-617. doi:10.1109/3.81370 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem