- -

Guest Editorial Special Section on Advanced Signal and Image Processing Techniques for Electric Machines and Drives Fault Diagnosis and Prognosis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Guest Editorial Special Section on Advanced Signal and Image Processing Techniques for Electric Machines and Drives Fault Diagnosis and Prognosis

Show simple item record

Files in this item

dc.contributor.author Antonino-Daviu, J. es_ES
dc.contributor.author Lee, Sang Bin es_ES
dc.contributor.author Strangas, Elias es_ES
dc.date.accessioned 2018-06-07T04:32:33Z
dc.date.available 2018-06-07T04:32:33Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1551-3203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/103513
dc.description © 2017 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
dc.description.abstract [EN] With the expansion of the use of electrical drive sys- tems to more critical applications, the issue of reliability and fault mitigation and condition-based maintenance have consequently taken an increasing importance: it has become a crucial one that cannot be neglected or dealt with in an ad-hoc way. As a result research activity has increased in this area, and new methods are used, some based on a continuation and improvement of previous accomplishments, while others are applying theory and techniques in related areas. This Special Section of the IEEE Transactions on Industrial Informatics attracted a number of papers dealing with Advanced Signal and Image Processing Techniques for Electric Machine and Drives Fault Diagnosis and Prognosis. This editorial aims to put these contributions in context, and highlight the new ideas and directions therein. es_ES
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Industrial Informatics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Feature extraction es_ES
dc.subject Fault diagnosis es_ES
dc.subject Prognostics and health management es_ES
dc.subject Electric machines es_ES
dc.subject Estimation es_ES
dc.subject Sensors es_ES
dc.subject Mathematical model es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title Guest Editorial Special Section on Advanced Signal and Image Processing Techniques for Electric Machines and Drives Fault Diagnosis and Prognosis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TII.2017.2690464 es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-06-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Antonino-Daviu, J.; Lee, SB.; Strangas, E. (2017). Guest Editorial Special Section on Advanced Signal and Image Processing Techniques for Electric Machines and Drives Fault Diagnosis and Prognosis. IEEE Transactions on Industrial Informatics. 13(3):1257-1260. doi:10.1109/TII.2017.2690464 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1109/TII.2017.2690464 es_ES
dc.description.upvformatpinicio 1257 es_ES
dc.description.upvformatpfin 1260 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela 332158 es_ES


This item appears in the following Collection(s)

Show simple item record