- -

An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing.

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing.

Show full item record

Montero-Pau, J.; Blanca Postigo, JM.; Esteras Gómez, C.; Martínez Pérez, EM.; GOMEZ P; Monforte Gilabert, AJ.; Cañizares Sales, J.... (2017). An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing. BMC Genomics. 18(94):1-21. doi:10.1186/s12864-016-3439-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/103607

Files in this item

Item Metadata

Title: An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing.
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Issued date:
[EN] Background: Cucurbita pepo is a cucurbit with growing economic importance worldwide. Zucchini morphotype is the most important within this highly variable species. Recently, transcriptome and Simple Sequence Repeat (SSR)- ...[+]
Subjects: Cucurbita pepo , RIL , GBS , Cartography , Phenotyping , Candidate genes
Copyrigths: Reconocimiento (by)
BMC Genomics. (issn: 1471-2164 )
DOI: 10.1186/s12864-016-3439-y
Springer (Biomed Central Ltd.)
Publisher version: https://doi.org/10.1186/s12864-016-3439-y
This work has been carried out in the framework of the INIA projects RTA2011-00044-C02-1/2 and E-RTA2013-00020-C04-03 of the Spanish Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA) cofunded ...[+]
Type: Artículo


FAOSTAT 2015. http://www.fao.org/faostat/en/#data/QC . Accessed 1 Apr 2016.

Manzano S, Martínez C, Megias Z, Garrido D, Jamilena M. Involvement of ethylene biosynthesis and signalling in the transition from male to female flowering in the monoecious Cucurbita pepo. J Plant Growth Regul. 2013;32(4):789–98.

Martínez C, Manzano S, Megias Z, Garrido D, Pico B, Jamilena M. Sources of parthenocarpy for Zucchini breeding: relationship with ethylene production and sensitivity. Euphytica. 2014;200(3):349–62. [+]
FAOSTAT 2015. http://www.fao.org/faostat/en/#data/QC . Accessed 1 Apr 2016.

Manzano S, Martínez C, Megias Z, Garrido D, Jamilena M. Involvement of ethylene biosynthesis and signalling in the transition from male to female flowering in the monoecious Cucurbita pepo. J Plant Growth Regul. 2013;32(4):789–98.

Martínez C, Manzano S, Megias Z, Garrido D, Pico B, Jamilena M. Sources of parthenocarpy for Zucchini breeding: relationship with ethylene production and sensitivity. Euphytica. 2014;200(3):349–62.

Decker-Walters DS, Walters TW, Posluszny U, Kevan PG. Genealogy and gene flow among annual domesticated species of Cucurbita. Can J Bot. 1990;68:782–9.

Paris HS, Doron-Faigenboim A, Reddy UK, Donahoo R, Levi A. Genetic relationships in Cucurbita pepo (pumpkin, squash, gourd) as viewed with high frequency oligonucleotide-targeting active gene (HFO-TAG) markers. Genet Resour Crop Evol. 2015;62:1095–111.

Ferriol M, Picó B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet. 2003;107:271–82.

Formisano G, Roig C, Esteras C, Ercolano MR, Nuez F, Monforte AJ, et al. Genetic diversity of Spanish Cucurbita pepo landraces: an unexploited resource for summer squash breeding. Genet Resour Crop Evol. 2012;59(6):1169–84.

Paris HS. Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Econ Bot. 1989;43:423–43.

Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009;41:1275–81.

Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci. 2012;109:11872–7.

Guo SG, Zhang JG, Sun HH, Salse J, Lucas WJ, Zhang HY, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013;45(1):51–U82.

Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 2011;12:104.

Cucurbigene. https://cucurbigene.upv.es . Accessed 1 Apr 2016.

Martínez C, Manzano S, Megías Z, Barrera A, Boualem A, Garrido D, et al. Molecular and functional characterization of CpACS27A gene reveals its involvement in monoecy instability and other associated traits in squash (Cucurbita pepo L.). Planta. 2014;239:1201–15.

Paris HS. History of the cultivar-groups of Cucurbita pepo. In: Janick J, Wiley J, editors. Horticulture Review. New York, USA: John Wiley & Sons; 2000;25:71–170.

Vitiello A, Scarano D, D’Agostino N, Digilio MC, Pennacchio F, Corrado G, et al. Unraveling zucchini transcriptome response to aphids. PeerJ PrePrints. 2016; https://peerj.com/preprints/1635.pdf

Xanthopoulou A, Psomopoulos F, Ganopoulos I, Manioudaki M, Tsaftaris A, Nianiou-Obeidat I, et al. De novo transcriptome assembly of two contrasting pumpkin cultivars. Genomics Data. 2016;7:200–1.

Lee YH, Jeon HJ, Hong KH, Kim BD. Use of random amplified polymorphic DNA for linkage group analysis in an interspecific cross hybrid F2 generation of Cucurbita. J Kor Soc Hortic Sci. 1995;36:323–30.

Brown RN, Myers JR. A genetic map of squash (Cucurbita ssp.) with randomly amplified polymorphic DNA markers and morphological markers. J Am Soc Hortic Sci. 2002;127:568–75.

Zraidi A, Stift G, Pachner M, Shojaeiyan A, Gong L, Lelley T. A consensus map for Cucurbita pepo. Mol Breed. 2007;20:375–88.

Gong L, Pachner M, Kalai K, Lelley T. SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome. 2008;51:878–87.

Gong L, Stift G, Kofler R, Pachner M, Lelley T. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet. 2008;117:37–48.

Esteras C, Gómez P, Monforte AJ, Blanca J, Vicente-Dólera N, Roig C, et al. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics. 2012;13:80.

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6(5):e19379.

Poland JA, Rife TW. Genotyping-by-sequencing for plant breeding and genetics. Plant Genome J. 2012;5(3):92–102.

Takuno S, Terauchi R, Innan H. The power of QTL mapping with RILs. PLoS ONE. 2012;7(10):e46545.

GBS barcode splitter. https://sourceforge.net/projects/gbsbarcode/ . Accessed 1 Apr 2016.

Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. ArXiv preprint. 2012; arXiv:1207.3907.

da Silva Pereira G, Di Cassia Laperuta L, Nunes ES, Chavarría L, Pastina MM, Gazaffi R, et al. The sweet passion fruit (Passiflora alata) crop: genetic and ghenotypic parameter estimates and QTL mapping for fruit traits. Tropical Plant Biol. 2016; DOI 10.1007/s12042-016-9181-4 .

Broman KW, Wu H, Sen S, Churchill GA. R/qtl: QTL mapping in experimental crosses. Bioinformatics. 2003;19(7):889–90.

Taylor J, Butler D. ASMap: Linkage Map Construction using the MSTmap Algorithm. R package version 0.4-5. 2015.

Wu Y, Bhat PR, Close TJ, Lonardi S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet. 2008;4(10):e1000212.

van Os H, Stam P, Visser RGF, van Eck HJ. SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor Appl Genet. 2005;112:187–94.

Kosambi DD. The estimation of map distances from recombination values. Ann Eugenics. 1943;12:172–5.

Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.

Voorrips RE. MapChart: Software for the graphical presentation of linkage maps and QTL. J Hered. 2002;93(1):77–8.

Zhang G, Ren Y, Sun H, Guo S, Zhang F, Zhang J, et al. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics. 2015;16(1):1101.

Hepworth SR, Klenz JE, Haughn GW. UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta. 2006;223(4):769–78.

Baurle I, Smith L, Baulcombe DC, Dean C. Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science. 2007;318:109–12.

Zhang W, Fan S, Pang C, Wei H, Ma J, Song M, et al. Molecular cloning and function analysis of two SQUAMOSA-Like MADS-box genes from Gossypium hirsutum L. J Integr Plant Biol. 2013;55(7):597–607.

Tsuda K, Ito Y, Sato Y, Kurata N. Positive autoregulation of a KNOX gene is essential for shoot apical meristem maintenance in rice. Plant Cell. 2011;23(12):4368–81.

Li S. The Arabidopsis thaliana TCP transcription factors: A broadening horizon beyond development. Plant Signal Behav. 2015;10(7):e1044192.

Wanga Y, Henrikssona E, Södermana E, Henrikssona KN, Sundberga E, Engströma P. The Arabidopsis homeobox gene, ATHB16, regulates leaf development and the sensitivity to photoperiod in Arabidopsis. Dev Biol. 2003;264(1):228–39.

Bou-Torrenta J, Salla-Martreta M, Brandtb R, Musielakb T, Palauquic JC, Martínez-García JF, et al. ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in Arabidopsis. Plant Signal Behav. 2012;7(11):1382–7.

Paris HS, Nerson H, Burger Y. Leaf silvering of Cucurbita. Can J Plant Sci. 1987;67:593–8.

Shifriss O. Further notes on the silvery-leaf trait in Cucurbita. Cucurbit Genet Coop Rep. 1984;7:81–3.

Paris HS, Padley Jr LD. Gene List for Cucurbita species. Cucurbit Genet Coop Rep. 2014;37:1–7.

Young K, Kabelka EA. Characterization of resistance to squash silverleaf disorder in summer squash. Hortscience. 2009;44(5):1213–4.

Knopf RR, Trebitsh T. The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell Physiol. 2006;47(9):1217–28.

Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science. 2008;321:836–8.

Boualem A, Troadec C, Kovalski I, Sari MA, Perl-Treves R, Bendahmane A. A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS One. 2009;4:e6144.

Li Z, Huang S, Liu S, Pan J, Zhang Z, Tao Q, et al. Molecular isolation of the m gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics. 2009;182(4):1381–5.

Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, et al. A transposon induced epigenetic change leads to sex determination in melon. Nature. 2009;461:1135–8.

Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari MA, et al. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science. 2015;350(6261):688–91.

Manzano S, Martínez C, Domínguez V, Avalos E, Garrido D, Gómez P, et al. Major gene conferring reduced ethylene sensitivity and maleness in Cucurbita pepo. J Plant Growth Regul. 2010;29:73–80.

Wien HC, Stapleton SC, Maynard DN, McClurg C, Riggs D. Flowering, sex expression, and fruiting of pumpkin (Cucurbita sp.) cultivars under various temperatures in greenhouse and distant field trials. Hortscience. 2004;39(2):239–42.

Peñaranda A, Payan MC, Garrido D, Gómez P, Jamilena M. Production of fruits with attached flowers in zucchini squash is correlated with the arrest of maturation of female flowers. J Hortic Sci Biotech. 2007;82(4):579–84.

Yoo SK, Wu X, Lee JS, Ahn JH. AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis. Plant J. 2011;65(1):62–76.

Na X, Jian B, Yao W, Wu C, Hou W, Jiang B, et al. Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean. Plant Cell Rep. 2013;32:1219–29.

Shi P, Guy KM, Wu W, Fang B, Yang J, Zhang M, et al. Genome-wide identification and expression analysis of the ClTCP transcription factors in Citrullus lanatus. BMC Plant Biol. 2016;16:85.

Lu H, Lin T, Klein J, Huang S. QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet. 2014;127(7):1491–9.

Lian G, Ding Z, Wang Q, Zhang D, Xu J. Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. Sci World J. 2014;2014:534140.

Costanzo E, Trehin C, Vandenbussche M. Review: Part of a special issue on flower development. The role of WOX genes in flower development. Ann Bot. 2014;114:1545–53.

Chao QM, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell. 1997;89(7):1133–44.

Liu J, Van Eck J, Cong B, Tanksley SD. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci. 2002;99:13302–6.

Monforte AJ, Diaz A, Caño-Delgado A, van der Knaap E. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot. 2014;65(16):4625–37.

Wang S, Chang Y, Ellis B. Overview of OVATE FAMILY PROTEINS, a novel class of plant-specific growth regulators. Front Plant Sci. 2016;7:417.

Muños S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, et al. Increase in tomato locule number is controlled by two SNPs located near WUSCHEL. Plant Physiol. 2011;156(4):2244–54.

Pan Y, Bradley G, Pyke K, Ball G, Lu C, Fray R, et al. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits. Plant Physiol. 2013;161(3):1476–85.

Feder A, Burger J, Gao S, Lewinsohn E, Katzir N, Schaffer AA, et al. A Kelch domain-containing F-Box coding gene negatively regulates flavonoid accumulation in muskmelon. Plant Physiol. 2015;169(3):1714–26.

Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arús P. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet. 2004;108:750–8.

Eduardo I, Arús P, Monforte AJ, Obando J, Fernández-Trujillo JP, Martínez JA, et al. Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Amer Soc Hort Sci. 2007;132:80–9.

Nakkanong K, Yang JH, Zhang MF. Carotenoid accumulation and carotenogenic gene expression during fruit development in novel interspecific inbred squash lines and their parents. J Agric Food Chem. 2012;60(23):5936–44.

Hughes MB. The inheritance of two characters of Cucumis melo and their interrelationship. Proc American Soc Horticultural Sci. 1948;52:399–402.

Iman MK, Abo-Bakr MA, Hanna HY. Inheritance of some economic characters in crosses between sweet melon and snake cucumber. I. Inheritance of qualitative characters. Assiut J Ag Sco. 1972;3:363–80.

Tzuri G, Zhou X, Chayut N, et al. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J. 2015;82:267–79.

Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, et al. A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet. 2010;121:511–33.

Ramamurthy RK, Waters BM. Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica. 2015;204:163–77.

Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, et al. Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet. 2015;16:28.


This item appears in the following Collection(s)

Show full item record