- -

High virulence does not necessarily impede viral adaptation to a new host: a case study using a plant RNA virus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High virulence does not necessarily impede viral adaptation to a new host: a case study using a plant RNA virus

Mostrar el registro completo del ítem

Willemsen, A.; Zwart, MP.; Elena Fito, SF. (2017). High virulence does not necessarily impede viral adaptation to a new host: a case study using a plant RNA virus. BMC Evolutionary Biology. 17(25):1-18. https://doi.org/10.1186/s12862-017-0881-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/103610

Ficheros en el ítem

Metadatos del ítem

Título: High virulence does not necessarily impede viral adaptation to a new host: a case study using a plant RNA virus
Autor: Willemsen, Anouk Zwart, Mark Peter Elena Fito, Santiago Fco.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Background: Theory suggests that high virulence could hinder between-host transmission of microparasites, and that virulence therefore will evolve to lower levels. Alternatively, highly virulent microparasites could ...[+]
Palabras clave: Adaptation , Experimental evolution , Genome architecture , Evolution , Host-pathogen interactions , Virus evolution
Derechos de uso: Reconocimiento (by)
Fuente:
BMC Evolutionary Biology. (issn: 1471-2148 )
DOI: 10.1186/s12862-017-0881-7
Editorial:
Springer (Biomed Central Ltd.)
Versión del editor: https://doi.org/10.1186/s12862-017-0881-7
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BFU2012-30805/ES/EVOLUTIONARY SYSTEMS VIROLOGY: EPISTASIS AND THE RUGGEDNESS OF ADAPTIVE LANDSCAPES, MUTATIONS IN REGULATORY SEQUENCES, AND THE HOST DETERMINANTS OF VIRAL FITNESS/
info:eu-repo/grantAgreement/EC/FP7/610427/EU/Evolution of Evolution/
info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/
Agradecimientos:
This work was supported by the John Templeton Foundation [grant number 22371 to S.F.E]; the European Commission 7th Framework Program EvoEvo Project [grant number ICT-610427 to S.F.E.]; and the Spanish Ministerio de Economia ...[+]
Tipo: Artículo

References

Ewald PW. Host-parasite relations, vectors, and the evolution of disease severity. Annu Rev Ecol Syst. 1983;14:465–85.

Alizon S, Hurford A, Mideo N, Van Baalen M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol. 2009;22:245–59.

Fraser C, Hollingsworth TD, Chapman R, de Wolf F, Hanage WP. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc Natl Acad Sci U S A. 2007;104:17441–6. [+]
Ewald PW. Host-parasite relations, vectors, and the evolution of disease severity. Annu Rev Ecol Syst. 1983;14:465–85.

Alizon S, Hurford A, Mideo N, Van Baalen M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol. 2009;22:245–59.

Fraser C, Hollingsworth TD, Chapman R, de Wolf F, Hanage WP. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc Natl Acad Sci U S A. 2007;104:17441–6.

De Roode JC, Yates AJ, Altizer S. Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc Natl Acad Sci U S A. 2008;105:7489–94.

Mackinnon MJ, Gandon S, Read AF. Virulence evolution in response to vaccination: the case of malaria. Vaccine. 2008;26 Suppl 3:C42–52.

Ebert D, Weisser WW. Optimal killing for obligate killers: the evolution of life histories and virulence of semelparous parasites. Proc R Soc B. 1997;264:985–91.

Pagán I, Montes N, Milgroom MG, García-Arenal F. Vertical transmission selects for reduced virulence in a plant virus and for increased resistance in the host. PLoS Pathog. 2014;10:e1004293.

May RM, Nowak MA. Coinfection and the evolution of parasite virulence. Proc R Soc B. 1995;261:209–15.

De Roode JC, Pansini R, Cheesman SJ, Helinski MEH, Huijben S, Wargo AR, Bell AS, Chan BHK, Walliker D, Read AF. Virulence and competitive ability in genetically diverse malaria infections. Proc Natl Acad Sci U S A. 2005;102:7624–8.

Brown SP, Cornforth DM, Mideo N. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol. 2012;20:336–42.

Boots M, Sasaki A. The evolutionary dynamics of local infection and global reproduction in host-parasite interactions. Ecol Lett. 2000;3:181–5.

Bull JJ, Lauring AS. Theory and empiricism in virulence evolution. PLoS Pathog. 2014;10:e1004387.

Bull JJ, Ebert D. Invasion thresholds and the evolution of nonequilibrium virulence. Evol Appl. 2008;1:172–82.

Lenski RE, May RM. The evolution of virulence in parasites and pathogens: reconciliation between two competing hypotheses. J Theor Biol. 1994;169:253–65.

Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Délicat A, Paweska JT, Gonzalez J-P, Swanepoel R. Fruit bats as reservoirs of Ebola virus. Nature. 2005;438:575–6.

Longdon B, Hadfield JD, Day JP, Smith SCL, McGonigle JE, Cogni R, Cao C, Jiggins FM. The causes and consequences of changes in virulence following pathogen host shifts. PLoS Pathog. 2015;11:e1004728.

Lalić J, Cuevas JM, Elena SF. Effect of host species on the distribution of mutational fitness effects for an RNA virus. PLoS Genet. 2011;7:e1002378.

Bedhomme S, Lafforgue G, Elena SF. Multihost experimental evolution of a plant RNA virus reveals local adaptation and host-specific mutations. Mol Biol Evol. 2012;29:1481–92.

Velasquez N, Hossain MJ, Murphy JF. Differential disease symptoms and full-length genome sequence analysis for three strains of Tobacco etch virus. Virus Genes. 2015;50:442–9.

Revers F, García JA. Molecular biology of potyviruses. Adv Virus Res. 2015;92:101–99.

Zwart MP, Willemsen A, Daròs JA, Elena SF. Experimental evolution of pseudogenization and gene loss in a plant RNA virus. Mol Biol Evol. 2014;31:121–34.

Carrington JC, Haldeman R, Dolja VV, Restrepo-Hartwig MA. Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo. J Virol. 1993;67:6995–7000.

Zwart MP, Daròs JA, Elena SF. One is enough: in vivo effective population size is dose-dependent for a plant RNA virus. PLoS Pathog. 2011;7:e1002122.

Carrasco P, Daròs JA, Agudelo-Romero P, Elena SF. A real-time RT-PCR assay for quantifying the fitness of Tobacco etch virus in competition experiments. J Virol Methods. 2007;139:181–8.

FASTX-Toolkit. Hannon Lab. http://hannonlab.cshl.edu/fastx_toolkit/index.html . Accessed 4 Oct 2016.

Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–76.

R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2014. https://www.r-project.org/ . Accessed 4 Oct 2016.

Dolja VV, Herndon KL, Pirone TP, Carrington JC. Spontaneous mutagenesis of a plant potyvirus genome after insertion of a foreign gene. J Virol. 1993;67:5968–75.

Majer E, Daròs JA, Zwart M. Stability and fitness impact of the visually discernible Rosea1 marker in the tobacco etch virus genome. Viruses. 2013;5:2153–68.

Plisson C, Drucker M, Blanc S, German-Retana S, Le Gall O, Thomas D, Bron P. Structural characterization of HC-Pro, a plant virus multifunctional protein. J Biol Chem. 2003;278:23753–61.

Shiboleth YM, Haronsky E, Leibman D, Arazi T, Wassenegger M, Whitham SA, Gaba V, Gal-On A. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J Virol. 2007;81:13135–48.

Sardanyés J, Elena SF. Error threshold in RNA quasispecies models with complementation. J Theor Biol. 2010;265:278–86.

Willemsen A, Zwart MP, Tromas N, Majer E, Daròs JA, Elena SF. Multiple barriers to the evolution of alternative gene orders in a positive-strand RNA virus. Genetics. 2016;202:1503–21.

Tromas N, Zwart MP, Lafforgue G, Elena SF. Within-host spatiotemporal dynamics of plant virus infection at the cellular level. PLoS Genet. 2014;10:e1004186.

Willemsen A, Zwart MP, Higueras P, Sardanyés J, Elena SF. Predicting the stability of homologous gene duplications in a plant RNA virus. Genome Biol Evol. 2016;8:3065–82.

De Vos MGJ, Dawid A, Sunderlikova V, Tans SJ. Breaking evolutionary constraint with a tradeoff ratchet. Proc Natl Acad Sci U S A. 2015;112:14906–11.

Hernández-Crespo P, Sait SM, Hails RS, Cory JS. Behavior of a recombinant baculovirus in lepidopteran hosts with different susceptibilities. Appl Environ Microbiol. 2001;67:1140–6.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem