- -

On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices

Show full item record

García Meca, C.; Lechago-Buendia, S.; Brimont, ACJ.; Griol Barres, A.; Mas Gómez, SM.; Sánchez Diana, LD.; Bellieres, LC.... (2017). On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications. 6:e17053-e17053. https://doi.org/10.1038/lsa.2017.53

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/103618

Files in this item

Item Metadata

Title: On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices
Author: García Meca, Carlos Lechago-Buendia, Sergio Brimont, Antoine Christian Jacques Griol Barres, Amadeu Mas Gómez, Sara María Sánchez Diana, Luis David Bellieres, Laurent Christophe Sánchez Losilla, Nuria Martí Sendra, Javier
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica
Issued date:
Abstract:
[EN] Photonic integrated circuits are developing as key enabling components for high-performance computing and advanced network-on-chip, as well as other emerging technologies such as lab-on-chip sensors, with relevant ...[+]
Subjects: Integrated optics , Lab-on-a-chip devices , Nanoantenna , Sensing , Silicon photonics
Copyrigths: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Source:
Light: Science & Applications. (eissn: 2047-7538 )
DOI: 10.1038/lsa.2017.53
Publisher:
Nature Publishing Group
Publisher version: https://doi.org/10.1038/lsa.2017.53
Project ID:
info:eu-repo/grantAgreement/EC/FP7/318240/EU
AEI/TEC2015-73581-JIN
...[+]
info:eu-repo/grantAgreement/EC/FP7/318240/EU
info:eu-repo/grantAgreement/EC/H2020/671553/EU
AEI/TEC2015-73581-JIN
GV/APOSTD/2014/044
MINECO/TEC2015-63838-C3-1-R
GV/PROMETEOII/2014/034
[-]
Thanks:
Funding from grant TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) is acknowledged. This work was also supported by project TEC2015-73581-JIN (AEI/FEDER, UE), the EU-funded projects FP7-ICT PHOXTROT (No.318240) and ...[+]
Type: Artículo

References

Kirchain R, Kimerling R . A roadmap for nanophotonics. Nat Photonics 2007; 1: 303–305.

Fan XD, White IM . Optofluidic microsystems for chemical and biological analysis. Nat Photonics 2011; 5: 591–597.

Zhuang LM, Roeloffzen CGH, Meijerink A, Burla M, Marpaung DAI et al. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part II: experimental prototype. J Lightw Technol 2010; 28: 19–31. [+]
Kirchain R, Kimerling R . A roadmap for nanophotonics. Nat Photonics 2007; 1: 303–305.

Fan XD, White IM . Optofluidic microsystems for chemical and biological analysis. Nat Photonics 2011; 5: 591–597.

Zhuang LM, Roeloffzen CGH, Meijerink A, Burla M, Marpaung DAI et al. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part II: experimental prototype. J Lightw Technol 2010; 28: 19–31.

Yu NF, Capasso F . Flat optics with designer metasurfaces. Nat Mater 2014; 13: 139–150.

Condrat C, Kalla P, Blair S . Crossing-aware channel routing for integrated optics. IEEE Trans Comput-Aided Design Integr Circuits Syst 2014; 33: 814–825.

Lee BG, Rylyakov AV, Green WMJ, Assefa S, Baks CW et al. Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits. J Lightw Technol 2014; 32: 743–751.

Robinson JP, Roederer M . Flow cytometry strikes gold. Science 2015; 350: 739–740.

Mao XL, Nawaz AA, Lin SC, Lapsley MI, Zhao YH et al. An integrated, multiparametric flow cytometry chip using 'microfluidic drifting' based three-dimensional hydrodynamic focusing. Biomicrofluidics 2012; 6: 024113.

Schurr JM . Dynamic light scattering of biopolymers and biocolloids. CRC Crit Rev Biochem 1977; 4: 371–431.

Padgett M, Bowman R . Tweezers with a twist. Nat Photonics 2011; 5: 343–348.

Haurylau M, Chen GQ, Chen H, Zhang JD, Nelson NA et al. On-chip optical interconnect roadmap: challenges and critical directions. IEEE J Select Top Quantum Electron 2006; 12: 1699–1705.

Chan JN, Hendry G, Biberman A, Bergman K . Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis. J Lightw Technol 2010; 28: 1305–1315.

Vlasov Y, Green WMJ, Xia FN . High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photonics 2008; 2: 242–246.

Novotny L, van Hulst N . Antennas for light. Nat Photonics 2011; 5: 83–90.

Fischer H, Martin OJF . Engineering the optical response of plasmonic nanoantennas. Opt Express 2008; 16: 9144–9154.

Dregely D, Taubert R, Dorfmüller J, Vogelgesang R, Kern K et al. 3D optical Yagi-Uda nanoantenna array. Nat Commun 2011; 2: 267.

Ni XJ, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM . Broadband light bending with plasmonic nanoantennas. Science 2012; 335: 427.

Koenderink AF, Alù A, Polman A . Nanophotonics: shrinking light-based technology. Science 2015; 348: 516–521.

Polman A . Plasmonics applied. Science 2008; 322: 868–869.

Brongersma ML, Shalaev VM . The case for plasmonics. Science 2010; 328: 440–441.

Alù A, Engheta N . Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys Rev Lett 2010; 104: 213902.

Solís DM, Taboada JM, Obelleiro F, Landesa L . Optimization of an optical wireless nanolink using directive nanoantennas. Opt Express 2013; 21: 2369–2377.

Dregely D, Lindfors K, Lippitz M, Engheta N, Totzeck M et al. Imaging and steering an optical wireless nanoantenna link. Nat Commun 2014; 5: 4354.

Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 2010; 329: 930–933.

Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR . Large-scale nanophotonic phased array. Nature 2013; 493: 195–199.

Van Acoleyen K, Bogarets W, Jágerská J, Le Thomas N, Houdré R et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt Lett 2009; 34: 1477–1479.

Van Acoleyen K, Rogier H, Baets R . Two-dimensional optical phased array antenna on silicon-on-insulator. Opt Express 2010; 23: 13655–13660.

Rodríguez-Fortuño FJ, Puerto D, Griol A, Bellieres L, Martí J et al. Sorting linearly polarized photons with a single scatterer. Opt Lett 2014; 39: 1394–1397.

Krasnok AE, Miroshnichenko AE, Belov PA, Kivshar YS . All-dielectric optical nanoantennas. Opt Express 2012; 20: 20599–20604.

Filonov DS, Krasnok AE, Slobozhanyuk AP, Kapitanova PV, Nenasheva EA et al. Experimental verification of the concept of all-dielectric nanoantennas. Appl Phys Lett 2012; 100: 201113.

Cárdenas J, Poitras CB, Robinson JT, Preston K, Chen L et al. Low loss etchless silicon photonic waveguides. Opt Express 2009; 17: 4752–4757.

Balanis CA . Antenna Theory: Analysis and Design. Wiley: New York; 1982.

Kosako T, Kadoya Y, Hofmann HF . Directional control of light by a nano-optical Yagi-Uda antenna. Nat Photonics 2010; 4: 312–315.

Subbaraman H, Xu XC, Hosseini A, Zhang XY, Zhang Y et al. Recent advances in silicon-based passive and active optical interconnects. Opt Express 2015; 23: 2487–2511.

Della Corte FG, Esposito Montefusco M, Moretti L, Rendina I, Cocorullo G . Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models. J Appl Phys 2000; 88: 7115–7119.

Chu T, Yamada H, Ishida S, Arakawa Y . Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides. Opt Express 2005; 13: 10109–10114.

Wang WJ, Zhao Y, Zhou HF, Hao YL, Yang JY et al. CMOS-compatible 1 × 3 silicon electrooptic switch with low crosstalk. IEEE Photon Technol Lett 2011; 23: 751–753.

Cui KY, Zhao Q, Feng X, Liu F, Huang YD et al Ultra-compact and broadband 1 × 4 thermo-optic switch based on W2 photonic crystal waveguides. Proceedings of 2005 Opto-Electronics and Communications Conference; 28 June–2 July 2015; Shanghai, IEEE: Shanghai 2015.

Lee BG, Dupuis N, Pepeljugoski P, Schares L, Budd R et al. Silicon photonic switch fabrics in computer communications systems. J Lightw Technol 2015; 33: 768–777.

Song WW, Gatdula R, Abbaslou S, Lu M, Stein A et al. High-density waveguide superlattices with low crosstalk. Nat Commun 2015; 6: 7027.

Melati D, Morichetti F, Gentili GG, Melloni A . Optical radiative crosstalk in integrated photonic waveguides. Opt Lett 2014; 39: 3982–3985.

Zhang YS, Watts BR, Guo TY, Zhang ZY, Xu CQ et al. Optofluidic device based microflow cytometers for particle/cell detection: a review. Micromachines 2016; 7: 70.

Kotz KT, Petrofsky AC, Haghgooie R, Granier R, Toner M et al. Inertial focusing cytometer with integrated optics for particle characterization. Technology (Singap World Sci) 2013; 1: 27–36.

Hunt HC, Wilkinson JS . Multimode interference devices for focusing in microfluidic channels. Opt Lett 2011; 36: 3067–3069.

[-]

This item appears in the following Collection(s)

Show full item record