- -

On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Meca, Carlos es_ES
dc.contributor.author Lechago-Buendia, Sergio es_ES
dc.contributor.author Brimont, Antoine Christian Jacques es_ES
dc.contributor.author Griol Barres, Amadeu es_ES
dc.contributor.author Mas Gómez, Sara María es_ES
dc.contributor.author Sánchez Diana, Luis David es_ES
dc.contributor.author Bellieres, Laurent Christophe es_ES
dc.contributor.author Sánchez Losilla, Nuria es_ES
dc.contributor.author Martí Sendra, Javier es_ES
dc.date.accessioned 2018-06-08T04:26:41Z
dc.date.available 2018-06-08T04:26:41Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/103618
dc.description.abstract [EN] Photonic integrated circuits are developing as key enabling components for high-performance computing and advanced network-on-chip, as well as other emerging technologies such as lab-on-chip sensors, with relevant applications in areas from medicine and biotechnology to aerospace. These demanding applications will require novel features, such as dynamically reconfigurable light pathways, obtained by properly harnessing on-chip optical radiation. In this paper, we introduce a broadband, high-directivity (>150), low-loss, and reconfigurable silicon photonics nanoantenna that fully enables on-chip radiation control. We propose the use of these nanoantennas as versatile building blocks to develop wireless (unguided) silicon photonic devices, which considerably enhance the range of achievable integrated photonic functionalities. As examples of applications, we demonstrate 160 Gbit·s-1 data transmission over mm-scale wireless interconnects, a compact low-crosstalk 12-port crossing, and electrically reconfigurable pathways via optical beam steering. Moreover, the realization of a flow micro-cytometer for particle characterization demonstrates the smart system integration potential of our approach as lab-on-chip devices. es_ES
dc.description.sponsorship Funding from grant TEC2015-63838-C3-1-R OPTONANOSENS (MINECO/FEDER, UE) is acknowledged. This work was also supported by project TEC2015-73581-JIN (AEI/FEDER, UE), the EU-funded projects FP7-ICT PHOXTROT (No.318240) and H2020-, the EU-funded H2020-FET-HPC EXANEST (No.671553) and the Generalitat Valenciana's PROMETEO grant NANOMET PLUS (PROMETEO II/2014/34) CG-M acknowledges support from Generalitat Valenciana’s VALi+d postdoctoral program (exp. APOSTD/ 2014/044). We thank David Zurita for his help in the design of the data acquisition code for the sensing application.
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Light: Science & Applications es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Integrated optics es_ES
dc.subject Lab-on-a-chip devices es_ES
dc.subject Nanoantenna es_ES
dc.subject Sensing es_ES
dc.subject Silicon photonics es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/lsa.2017.53 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-73581-JIN/ES/HACIA UNA NUEVA GENERACION DE CIRCUITOS INTEGRADOS FOTONICOS BASADOS EN OPTICA DE TRANSFORMACION, METASUPERFICIES Y MATERIALES RECONFIGURABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/318240/EU/Photonics for High-Performance, Low-Cost & Low-Energy Data Centers, High Performance Computing Systems:Terabit/s Optical Interconnect Technologies for On-Board, Board-to-Board, Rack-to-Rack data links/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671553/EU/European Exascale System Interconnect and Storage/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//APOSTD%2F2014%2F044/ES/APOSTD%2F2014%2F044/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-63838-C3-1-R/ES/DETECCION DE TOXINAS Y AGENTES PATOGENOS MEDIANTE BIOSENSORES OPTICOS NANOMETRICOS PARA AMENAZAS NBQ/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F044/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation García Meca, C.; Lechago-Buendia, S.; Brimont, ACJ.; Griol Barres, A.; Mas Gómez, SM.; Sánchez Diana, LD.; Bellieres, LC.... (2017). On-chip wireless silicon photonics: From reconfigurable interconnects to lab-on-chip devices. Light: Science & Applications. 6:e17053-e17053. https://doi.org/10.1038/lsa.2017.53 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/lsa.2017.53 es_ES
dc.description.upvformatpinicio e17053 es_ES
dc.description.upvformatpfin e17053 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.identifier.eissn 2047-7538 es_ES
dc.identifier.pmid 30167296 en_EN
dc.identifier.pmcid PMC6062325 en_EN
dc.relation.pasarela S\333146 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Commission
dc.description.references Kirchain R, Kimerling R . A roadmap for nanophotonics. Nat Photonics 2007; 1: 303–305. es_ES
dc.description.references Fan XD, White IM . Optofluidic microsystems for chemical and biological analysis. Nat Photonics 2011; 5: 591–597. es_ES
dc.description.references Zhuang LM, Roeloffzen CGH, Meijerink A, Burla M, Marpaung DAI et al. Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part II: experimental prototype. J Lightw Technol 2010; 28: 19–31. es_ES
dc.description.references Yu NF, Capasso F . Flat optics with designer metasurfaces. Nat Mater 2014; 13: 139–150. es_ES
dc.description.references Condrat C, Kalla P, Blair S . Crossing-aware channel routing for integrated optics. IEEE Trans Comput-Aided Design Integr Circuits Syst 2014; 33: 814–825. es_ES
dc.description.references Lee BG, Rylyakov AV, Green WMJ, Assefa S, Baks CW et al. Monolithic silicon integration of scaled photonic switch fabrics, CMOS logic, and device driver circuits. J Lightw Technol 2014; 32: 743–751. es_ES
dc.description.references Robinson JP, Roederer M . Flow cytometry strikes gold. Science 2015; 350: 739–740. es_ES
dc.description.references Mao XL, Nawaz AA, Lin SC, Lapsley MI, Zhao YH et al. An integrated, multiparametric flow cytometry chip using 'microfluidic drifting' based three-dimensional hydrodynamic focusing. Biomicrofluidics 2012; 6: 024113. es_ES
dc.description.references Schurr JM . Dynamic light scattering of biopolymers and biocolloids. CRC Crit Rev Biochem 1977; 4: 371–431. es_ES
dc.description.references Padgett M, Bowman R . Tweezers with a twist. Nat Photonics 2011; 5: 343–348. es_ES
dc.description.references Haurylau M, Chen GQ, Chen H, Zhang JD, Nelson NA et al. On-chip optical interconnect roadmap: challenges and critical directions. IEEE J Select Top Quantum Electron 2006; 12: 1699–1705. es_ES
dc.description.references Chan JN, Hendry G, Biberman A, Bergman K . Architectural exploration of chip-scale photonic interconnection network designs using physical-layer analysis. J Lightw Technol 2010; 28: 1305–1315. es_ES
dc.description.references Vlasov Y, Green WMJ, Xia FN . High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks. Nat Photonics 2008; 2: 242–246. es_ES
dc.description.references Novotny L, van Hulst N . Antennas for light. Nat Photonics 2011; 5: 83–90. es_ES
dc.description.references Fischer H, Martin OJF . Engineering the optical response of plasmonic nanoantennas. Opt Express 2008; 16: 9144–9154. es_ES
dc.description.references Dregely D, Taubert R, Dorfmüller J, Vogelgesang R, Kern K et al. 3D optical Yagi-Uda nanoantenna array. Nat Commun 2011; 2: 267. es_ES
dc.description.references Ni XJ, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM . Broadband light bending with plasmonic nanoantennas. Science 2012; 335: 427. es_ES
dc.description.references Koenderink AF, Alù A, Polman A . Nanophotonics: shrinking light-based technology. Science 2015; 348: 516–521. es_ES
dc.description.references Polman A . Plasmonics applied. Science 2008; 322: 868–869. es_ES
dc.description.references Brongersma ML, Shalaev VM . The case for plasmonics. Science 2010; 328: 440–441. es_ES
dc.description.references Alù A, Engheta N . Wireless at the nanoscale: optical interconnects using matched nanoantennas. Phys Rev Lett 2010; 104: 213902. es_ES
dc.description.references Solís DM, Taboada JM, Obelleiro F, Landesa L . Optimization of an optical wireless nanolink using directive nanoantennas. Opt Express 2013; 21: 2369–2377. es_ES
dc.description.references Dregely D, Lindfors K, Lippitz M, Engheta N, Totzeck M et al. Imaging and steering an optical wireless nanoantenna link. Nat Commun 2014; 5: 4354. es_ES
dc.description.references Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 2010; 329: 930–933. es_ES
dc.description.references Sun J, Timurdogan E, Yaacobi A, Hosseini ES, Watts MR . Large-scale nanophotonic phased array. Nature 2013; 493: 195–199. es_ES
dc.description.references Van Acoleyen K, Bogarets W, Jágerská J, Le Thomas N, Houdré R et al. Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt Lett 2009; 34: 1477–1479. es_ES
dc.description.references Van Acoleyen K, Rogier H, Baets R . Two-dimensional optical phased array antenna on silicon-on-insulator. Opt Express 2010; 23: 13655–13660. es_ES
dc.description.references Rodríguez-Fortuño FJ, Puerto D, Griol A, Bellieres L, Martí J et al. Sorting linearly polarized photons with a single scatterer. Opt Lett 2014; 39: 1394–1397. es_ES
dc.description.references Krasnok AE, Miroshnichenko AE, Belov PA, Kivshar YS . All-dielectric optical nanoantennas. Opt Express 2012; 20: 20599–20604. es_ES
dc.description.references Filonov DS, Krasnok AE, Slobozhanyuk AP, Kapitanova PV, Nenasheva EA et al. Experimental verification of the concept of all-dielectric nanoantennas. Appl Phys Lett 2012; 100: 201113. es_ES
dc.description.references Cárdenas J, Poitras CB, Robinson JT, Preston K, Chen L et al. Low loss etchless silicon photonic waveguides. Opt Express 2009; 17: 4752–4757. es_ES
dc.description.references Balanis CA . Antenna Theory: Analysis and Design. Wiley: New York; 1982. es_ES
dc.description.references Kosako T, Kadoya Y, Hofmann HF . Directional control of light by a nano-optical Yagi-Uda antenna. Nat Photonics 2010; 4: 312–315. es_ES
dc.description.references Subbaraman H, Xu XC, Hosseini A, Zhang XY, Zhang Y et al. Recent advances in silicon-based passive and active optical interconnects. Opt Express 2015; 23: 2487–2511. es_ES
dc.description.references Della Corte FG, Esposito Montefusco M, Moretti L, Rendina I, Cocorullo G . Temperature dependence analysis of the thermo-optic effect in silicon by single and double oscillator models. J Appl Phys 2000; 88: 7115–7119. es_ES
dc.description.references Chu T, Yamada H, Ishida S, Arakawa Y . Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides. Opt Express 2005; 13: 10109–10114. es_ES
dc.description.references Wang WJ, Zhao Y, Zhou HF, Hao YL, Yang JY et al. CMOS-compatible 1 × 3 silicon electrooptic switch with low crosstalk. IEEE Photon Technol Lett 2011; 23: 751–753. es_ES
dc.description.references Cui KY, Zhao Q, Feng X, Liu F, Huang YD et al Ultra-compact and broadband 1 × 4 thermo-optic switch based on W2 photonic crystal waveguides. Proceedings of 2005 Opto-Electronics and Communications Conference; 28 June–2 July 2015; Shanghai, IEEE: Shanghai 2015. es_ES
dc.description.references Lee BG, Dupuis N, Pepeljugoski P, Schares L, Budd R et al. Silicon photonic switch fabrics in computer communications systems. J Lightw Technol 2015; 33: 768–777. es_ES
dc.description.references Song WW, Gatdula R, Abbaslou S, Lu M, Stein A et al. High-density waveguide superlattices with low crosstalk. Nat Commun 2015; 6: 7027. es_ES
dc.description.references Melati D, Morichetti F, Gentili GG, Melloni A . Optical radiative crosstalk in integrated photonic waveguides. Opt Lett 2014; 39: 3982–3985. es_ES
dc.description.references Zhang YS, Watts BR, Guo TY, Zhang ZY, Xu CQ et al. Optofluidic device based microflow cytometers for particle/cell detection: a review. Micromachines 2016; 7: 70. es_ES
dc.description.references Kotz KT, Petrofsky AC, Haghgooie R, Granier R, Toner M et al. Inertial focusing cytometer with integrated optics for particle characterization. Technology (Singap World Sci) 2013; 1: 27–36. es_ES
dc.description.references Hunt HC, Wilkinson JS . Multimode interference devices for focusing in microfluidic channels. Opt Lett 2011; 36: 3067–3069. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem