- -

On the influence of interface charging dynamics and stressing conditions in strained silicon devices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the influence of interface charging dynamics and stressing conditions in strained silicon devices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Olivares-Sánchez-Mellado, Irene es_ES
dc.contributor.author Ivanova-Angelova, Todora es_ES
dc.contributor.author Sanchis Kilders, Pablo es_ES
dc.date.accessioned 2018-06-11T04:24:35Z
dc.date.available 2018-06-11T04:24:35Z
dc.date.issued 2017 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/103772
dc.description.abstract [EN] The performance of strained silicon devices based on the deposition of a top silicon nitride layer with high stress have been thoroughly analyzed by means of simulations and experimental results. Results clearly indicate that the electro-optic static response is basically governed by carrier efects. A frst evidence is the appearance of a variable optical absorption with the applied voltage that should not occur in case of having a purely electro-optic Pockels efect. However, hysteresis and saturation efects are also observed. We demonstrate that such efects are mainly due to the carrier trapping dynamics at the interface between the silicon and the silicon nitride and their infuence on the silicon nitride charge. This theory is further confrmed by analyzing identical devices but with the silicon nitride cladding layer optimized to have intrinsic stresses of opposite sign and magnitude. The latter is achieved by a post annealing process which produces a defect healing and consequently a reduction of the silicon nitride charge. Raman measurements are also carried out to confrm the obtained results. es_ES
dc.description.sponsorship Funding from projects TEC2016-76849-C2-2-R (MINECO/FEDER, UE) and NANOMET PLUS-Conselleria d'EducaciA<SUP>3</SUP>, Cultura i Esport - PROMETEOII/2014/034 is acknowledged. Irene Olivares also acknowledges the Universitat Politecnica de Valencia for funding his research staff training (FPI) grant. The authors would also like to thank Steven Van Roye from Ghent University for participating in the measurements of the annealed samples. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Strained silicon es_ES
dc.subject Silicon photonics es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title On the influence of interface charging dynamics and stressing conditions in strained silicon devices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-017-05067-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica es_ES
dc.description.bibliographicCitation Olivares-Sánchez-Mellado, I.; Ivanova-Angelova, T.; Sanchis Kilders, P. (2017). On the influence of interface charging dynamics and stressing conditions in strained silicon devices. Scientific Reports. 7(7241):1-8. https://doi.org/10.1038/s41598-017-05067-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/s41598-017-05067-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 7241 es_ES
dc.identifier.pmid 28775297 en_EN
dc.identifier.pmcid PMC5543050 en_EN
dc.relation.pasarela S\349068 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photonics 4, 518–526 (2010). es_ES
dc.description.references Rao, A. et al. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz. Optics Letters 41, 5700–5703 (2016). es_ES
dc.description.references Xiong, C. et al. Active silicon integrated nanophotonics: ferroelectric BaT i O 3 devices. Nano Letters 14, 1419–25 (2014). es_ES
dc.description.references Castera, P., Tulli, D., Gutierrez, A. M. & Sanchis, P. Influence of BaT i O 3 ferroelectric orientation for electro-optic modulation on silicon. Optics Express 23, 15332–15342 (2015). es_ES
dc.description.references Melikyan, A. et al. High-speed plasmonic phase modulators. Nature Photonics 5–9 (2014). es_ES
dc.description.references Jacobsen, R. S. et al. Strained silicon as a new electro-optic material. Nature 441, 199–202 (2006). es_ES
dc.description.references Hon, N. K., Tsia, K. K., Solli, D. R. & Jalali, B. Periodically poled silicon. Applied Physics Letters 94, 091116 (2009). es_ES
dc.description.references Chmielak, B. et al. Pockels effect based fully integrated, strained silicon electro-optic modulator. Optics Express 19, 17212–17219 (2011). es_ES
dc.description.references Avrutsky, I. & Soref, R. Phase-matched sum frequency generation in strained silicon waveguides using their second-order nonlinear optical susceptibility. Optics Express 19, 21707–21716 (2011). es_ES
dc.description.references Schriever, C., Bohley, C., Schilling, J. & Wehrspohn, R. B. Strained Silicon Photonics. Materials 5, 889–908 (2012). es_ES
dc.description.references Bianco, F. et al. Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides. Semiconductor Science and Technology 27, 085009 (2012). es_ES
dc.description.references Chmielak, B. et al. Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides. Optics Express 21, 25324–25332 (2013). es_ES
dc.description.references Aleali, A., Xu, D., Schmid, J. H., Cheben, P. & Winnie, N. Y. Optimization of stress-induced pockels effect in silicon waveguides for optical modulators. In Group IV Photonics (GFP), 2013 IEEE 10th International Conference on, 109–110 (IEEE, 2013). es_ES
dc.description.references Puckett, M. W., Smalley, J. S., Abashin, M., Grieco, A. & Fainman, Y. Tensor of the second-order nonlinear susceptibility in asymmetrically strained silicon waveguides: analysis and experimental validation. Optics Letters 39, 1693–1696 (2014). es_ES
dc.description.references Damas, P. et al. Wavelength dependence of pockels effect in strained silicon waveguides. Optics Express 22, 22095–22100 (2014). es_ES
dc.description.references Khurgin, J. B., Stievater, T. H., Pruessner, M. W. & Rabinovich, W. S. On the origin of the second-order nonlinearity in strained Si-SiN structures. JOSA B 32, 2494–2499 (2015). es_ES
dc.description.references Manganelli, C. L., Pintus, P. & Bonati, C. Modeling of strain-induced Pockels effect in Silicon. Optics Express 23, 28649–28666 (2015). es_ES
dc.description.references Damas, P., Marris-Morini, D., Cassan, E. & Vivien, L. Bond orbital description of the strain-induced second-order optical susceptibility in silicon. Physical Review B 93, 165208 (2016). es_ES
dc.description.references Cazzanelli, M. et al. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nature Materials 11, 148–154 (2012). es_ES
dc.description.references Schriever, C. et al. Second-Order Optical Nonlinearity in Silicon Waveguides: Inhomogeneous Stress and Interfaces. Advanced Optical Materials 3, 129–136 (2015). es_ES
dc.description.references Borghi, M. B. et al. High-frequency electro-optic measurement of strained silicon racetrack resonators. Optics Letters 40, 5287–5290 (2015). es_ES
dc.description.references Azadeh, S. S., Merget, F., Nezhad, M. & Witzens, J. On the measurement of the Pockels effect in strained silicon. Optics Letters 40, 1877–1880 (2015). es_ES
dc.description.references Sharma, R. et al. Effect of dielectric claddings on the electro-optic behavior of silicon waveguides. Optics Letters 41, 1185–1188 (2016). es_ES
dc.description.references Borghi, M. et al. Homodyne Detection of Free Carrier Induced Electro-Optic Modulation in Strained Silicon Resonators. Journal of Lightwave Technology 34, 5657–5668 (2016). es_ES
dc.description.references Olivares, I., Ivanova, T., Pinilla-Cienfuegos, E. & Sanchis, P. A systematic optimization of design parameters in strained silicon waveguides to further enhance the linear electro-optic effect. In SPIE Photonics Europe, 98910E-98910E (International Society for Optics and Photonics, 2016). es_ES
dc.description.references Warren, W. L., Lenahan, P. & Curry, S. E. First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride. Physical review letters 65, 207 (1990). es_ES
dc.description.references Warren, W., Kanicki, J., Robertson, J., Poindexter, E. & McWhorter, P. Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films. Journal of applied physics 74, 4034–4046 (1993). es_ES
dc.description.references Bazilchuk, M., Haug, H. & Marstein, E. S. Modulating the fixed charge density in silicon nitride films while monitoring the surface recombination velocity by photoluminescence imaging. Applied Physics Letters 106, 143505 (2015). es_ES
dc.description.references Stathis, J. H. & Zafar, S. The negative bias temperature instability in MOS devices: A review. Microelectronics Reliability 46, 270–286 (2006). es_ES
dc.description.references Alam, M. A. & Mahapatra, S. A comprehensive model of PMOS NBTI degradation. Microelectronics Reliability 45, 71–81 (2005). es_ES
dc.description.references Kufluoglu, H. & Alam, M. A. A computational model of NBTI and hot carrier injection time-exponents for MOSFET reliability. Journal of Computational Electronics 3, 165–169 (2004). es_ES
dc.description.references Schmidt, J., Schuurmans, F. M., Sinke, W. C., Glunz, S. W. & Aberle, A. G. Observation of multiple defect states at silicon-silicon nitride interfaces fabricated by low-frequency plasma-enhanced chemical vapor deposition. Applied Physics Letters 71, 252–254 (1997). es_ES
dc.description.references Sanjoh, A., Ikeda, N., Komaki, K. & Shintani, A. Analysis of Interface States between Plasma-CVD Silicon Nitride and Silicon-Substrate Using Deep-Level Transient Spectroscopy. Journal of The Electrochemical Society 137, 2974–2979 (1990). es_ES
dc.description.references Martnez, F., Mártil, I., González-Daz, G., Selle, B. & Sieber, I. Influence of rapid thermal annealing processes on the properties of SiN x :H films deposited by the electron cyclotron resonance method. Journal of non-crystalline solids 227, 523–527 (1998). es_ES
dc.description.references Martnez, F. et al. Thermal stability of a-SiN x :H films deposited by plasma electron cyclotron resonance. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17, 1280–1284 (1999). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem