Mostrar el registro sencillo del ítem
dc.contributor.author | Olivares-Sánchez-Mellado, Irene![]() |
es_ES |
dc.contributor.author | Ivanova-Angelova, Todora![]() |
es_ES |
dc.contributor.author | Sanchis Kilders, Pablo![]() |
es_ES |
dc.date.accessioned | 2018-06-11T04:24:35Z | |
dc.date.available | 2018-06-11T04:24:35Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/103772 | |
dc.description.abstract | [EN] The performance of strained silicon devices based on the deposition of a top silicon nitride layer with high stress have been thoroughly analyzed by means of simulations and experimental results. Results clearly indicate that the electro-optic static response is basically governed by carrier efects. A frst evidence is the appearance of a variable optical absorption with the applied voltage that should not occur in case of having a purely electro-optic Pockels efect. However, hysteresis and saturation efects are also observed. We demonstrate that such efects are mainly due to the carrier trapping dynamics at the interface between the silicon and the silicon nitride and their infuence on the silicon nitride charge. This theory is further confrmed by analyzing identical devices but with the silicon nitride cladding layer optimized to have intrinsic stresses of opposite sign and magnitude. The latter is achieved by a post annealing process which produces a defect healing and consequently a reduction of the silicon nitride charge. Raman measurements are also carried out to confrm the obtained results. | es_ES |
dc.description.sponsorship | Funding from projects TEC2016-76849-C2-2-R (MINECO/FEDER, UE) and NANOMET PLUS-Conselleria d'EducaciA<SUP>3</SUP>, Cultura i Esport - PROMETEOII/2014/034 is acknowledged. Irene Olivares also acknowledges the Universitat Politecnica de Valencia for funding his research staff training (FPI) grant. The authors would also like to thank Steven Van Roye from Ghent University for participating in the measurements of the annealed samples. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Strained silicon | es_ES |
dc.subject | Silicon photonics | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | On the influence of interface charging dynamics and stressing conditions in strained silicon devices | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-017-05067-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2016-76849-C2-2-R/ES/DESARROLLO DE OXIDOS METALICOS DE TRANSICION CON TECNOLOGIA DE SILICIO PARA APLICACIONES DE CONMUTACION E INTERCONEXION OPTICAS EFICIENTES Y RESPETUOSAS CON EL MEDIO AMBIENTE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F034/ES/Nanomet Plus/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica | es_ES |
dc.description.bibliographicCitation | Olivares-Sánchez-Mellado, I.; Ivanova-Angelova, T.; Sanchis Kilders, P. (2017). On the influence of interface charging dynamics and stressing conditions in strained silicon devices. Scientific Reports. 7(7241):1-8. https://doi.org/10.1038/s41598-017-05067-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1038/s41598-017-05067-9 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 7241 | es_ES |
dc.identifier.pmid | 28775297 | en_EN |
dc.identifier.pmcid | PMC5543050 | en_EN |
dc.relation.pasarela | S\349068 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photonics 4, 518–526 (2010). | es_ES |
dc.description.references | Rao, A. et al. High-performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to 50 GHz. Optics Letters 41, 5700–5703 (2016). | es_ES |
dc.description.references | Xiong, C. et al. Active silicon integrated nanophotonics: ferroelectric BaT i O 3 devices. Nano Letters 14, 1419–25 (2014). | es_ES |
dc.description.references | Castera, P., Tulli, D., Gutierrez, A. M. & Sanchis, P. Influence of BaT i O 3 ferroelectric orientation for electro-optic modulation on silicon. Optics Express 23, 15332–15342 (2015). | es_ES |
dc.description.references | Melikyan, A. et al. High-speed plasmonic phase modulators. Nature Photonics 5–9 (2014). | es_ES |
dc.description.references | Jacobsen, R. S. et al. Strained silicon as a new electro-optic material. Nature 441, 199–202 (2006). | es_ES |
dc.description.references | Hon, N. K., Tsia, K. K., Solli, D. R. & Jalali, B. Periodically poled silicon. Applied Physics Letters 94, 091116 (2009). | es_ES |
dc.description.references | Chmielak, B. et al. Pockels effect based fully integrated, strained silicon electro-optic modulator. Optics Express 19, 17212–17219 (2011). | es_ES |
dc.description.references | Avrutsky, I. & Soref, R. Phase-matched sum frequency generation in strained silicon waveguides using their second-order nonlinear optical susceptibility. Optics Express 19, 21707–21716 (2011). | es_ES |
dc.description.references | Schriever, C., Bohley, C., Schilling, J. & Wehrspohn, R. B. Strained Silicon Photonics. Materials 5, 889–908 (2012). | es_ES |
dc.description.references | Bianco, F. et al. Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides. Semiconductor Science and Technology 27, 085009 (2012). | es_ES |
dc.description.references | Chmielak, B. et al. Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides. Optics Express 21, 25324–25332 (2013). | es_ES |
dc.description.references | Aleali, A., Xu, D., Schmid, J. H., Cheben, P. & Winnie, N. Y. Optimization of stress-induced pockels effect in silicon waveguides for optical modulators. In Group IV Photonics (GFP), 2013 IEEE 10th International Conference on, 109–110 (IEEE, 2013). | es_ES |
dc.description.references | Puckett, M. W., Smalley, J. S., Abashin, M., Grieco, A. & Fainman, Y. Tensor of the second-order nonlinear susceptibility in asymmetrically strained silicon waveguides: analysis and experimental validation. Optics Letters 39, 1693–1696 (2014). | es_ES |
dc.description.references | Damas, P. et al. Wavelength dependence of pockels effect in strained silicon waveguides. Optics Express 22, 22095–22100 (2014). | es_ES |
dc.description.references | Khurgin, J. B., Stievater, T. H., Pruessner, M. W. & Rabinovich, W. S. On the origin of the second-order nonlinearity in strained Si-SiN structures. JOSA B 32, 2494–2499 (2015). | es_ES |
dc.description.references | Manganelli, C. L., Pintus, P. & Bonati, C. Modeling of strain-induced Pockels effect in Silicon. Optics Express 23, 28649–28666 (2015). | es_ES |
dc.description.references | Damas, P., Marris-Morini, D., Cassan, E. & Vivien, L. Bond orbital description of the strain-induced second-order optical susceptibility in silicon. Physical Review B 93, 165208 (2016). | es_ES |
dc.description.references | Cazzanelli, M. et al. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nature Materials 11, 148–154 (2012). | es_ES |
dc.description.references | Schriever, C. et al. Second-Order Optical Nonlinearity in Silicon Waveguides: Inhomogeneous Stress and Interfaces. Advanced Optical Materials 3, 129–136 (2015). | es_ES |
dc.description.references | Borghi, M. B. et al. High-frequency electro-optic measurement of strained silicon racetrack resonators. Optics Letters 40, 5287–5290 (2015). | es_ES |
dc.description.references | Azadeh, S. S., Merget, F., Nezhad, M. & Witzens, J. On the measurement of the Pockels effect in strained silicon. Optics Letters 40, 1877–1880 (2015). | es_ES |
dc.description.references | Sharma, R. et al. Effect of dielectric claddings on the electro-optic behavior of silicon waveguides. Optics Letters 41, 1185–1188 (2016). | es_ES |
dc.description.references | Borghi, M. et al. Homodyne Detection of Free Carrier Induced Electro-Optic Modulation in Strained Silicon Resonators. Journal of Lightwave Technology 34, 5657–5668 (2016). | es_ES |
dc.description.references | Olivares, I., Ivanova, T., Pinilla-Cienfuegos, E. & Sanchis, P. A systematic optimization of design parameters in strained silicon waveguides to further enhance the linear electro-optic effect. In SPIE Photonics Europe, 98910E-98910E (International Society for Optics and Photonics, 2016). | es_ES |
dc.description.references | Warren, W. L., Lenahan, P. & Curry, S. E. First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride. Physical review letters 65, 207 (1990). | es_ES |
dc.description.references | Warren, W., Kanicki, J., Robertson, J., Poindexter, E. & McWhorter, P. Electron paramagnetic resonance investigation of charge trapping centers in amorphous silicon nitride films. Journal of applied physics 74, 4034–4046 (1993). | es_ES |
dc.description.references | Bazilchuk, M., Haug, H. & Marstein, E. S. Modulating the fixed charge density in silicon nitride films while monitoring the surface recombination velocity by photoluminescence imaging. Applied Physics Letters 106, 143505 (2015). | es_ES |
dc.description.references | Stathis, J. H. & Zafar, S. The negative bias temperature instability in MOS devices: A review. Microelectronics Reliability 46, 270–286 (2006). | es_ES |
dc.description.references | Alam, M. A. & Mahapatra, S. A comprehensive model of PMOS NBTI degradation. Microelectronics Reliability 45, 71–81 (2005). | es_ES |
dc.description.references | Kufluoglu, H. & Alam, M. A. A computational model of NBTI and hot carrier injection time-exponents for MOSFET reliability. Journal of Computational Electronics 3, 165–169 (2004). | es_ES |
dc.description.references | Schmidt, J., Schuurmans, F. M., Sinke, W. C., Glunz, S. W. & Aberle, A. G. Observation of multiple defect states at silicon-silicon nitride interfaces fabricated by low-frequency plasma-enhanced chemical vapor deposition. Applied Physics Letters 71, 252–254 (1997). | es_ES |
dc.description.references | Sanjoh, A., Ikeda, N., Komaki, K. & Shintani, A. Analysis of Interface States between Plasma-CVD Silicon Nitride and Silicon-Substrate Using Deep-Level Transient Spectroscopy. Journal of The Electrochemical Society 137, 2974–2979 (1990). | es_ES |
dc.description.references | Martnez, F., Mártil, I., González-Daz, G., Selle, B. & Sieber, I. Influence of rapid thermal annealing processes on the properties of SiN x :H films deposited by the electron cyclotron resonance method. Journal of non-crystalline solids 227, 523–527 (1998). | es_ES |
dc.description.references | Martnez, F. et al. Thermal stability of a-SiN x :H films deposited by plasma electron cyclotron resonance. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17, 1280–1284 (1999). | es_ES |