- -

Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers

Mostrar el registro completo del ítem

Gasulla Mestre, I.; Barrera Vilar, D.; Hervás-Peralta, J.; Sales Maicas, S. (2017). Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers. Scientific Reports. 7(41727):1-10. https://doi.org/10.1038/srep41727

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/103793

Ficheros en el ítem

Metadatos del ítem

Título: Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers
Autor: Gasulla Mestre, Ivana Barrera Vilar, David Hervás-Peralta, Javier Sales Maicas, Salvador
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
[EN] The use of Spatial Division Multiplexing for Microwave Photonics signal processing is proposed and experimentally demonstrated, for the first time to our knowledge, based on the selective inscription of Bragg gratings ...[+]
Palabras clave: Bragg Gratings , Photonics
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/srep41727
Editorial:
Nature Publishing Group
Versión del editor: http://doi.org/10.1038/srep41727
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TEC2014-60378-C2-1-R/ES/FOTONICA DE MICROONDAS PARA APLICACIONES EMERGENTES/
info:eu-repo/grantAgreement/MINECO//TEC2015-62520-ERC/ES/INNOVACION EN DISPOSITIVOS BASADOS EN FIBRA OPTICA MULTINUCLEO PARA LA FOTONICA DE MICROONDAS/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/
info:eu-repo/grantAgreement/MINECO//RYC-2014-16247/ES/RYC-2014-16247/
Agradecimientos:
We thank Prof. Jose Capmany for the thoughtful discussions and recommendations that greatly contribute to this work. This research was supported by the Spanish MINECO Projects TEC2014-60378-C2-1-R and TEC2015-62520-ERC, ...[+]
Tipo: Artículo

References

Samsung Electronics Co, “5G Vision”, available at http://www.samsung.com/global/business-images/insights/2015/Samsung-5G-Vision-0.pdf (2015).

Technology Focus on Microwave Photonics. Nat. Photonics 5, 723 (2011).

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret & S. Sales . Microwave photonic signal processing. IEEE J. Lightw. Technol. 31, 571–586 (2013). [+]
Samsung Electronics Co, “5G Vision”, available at http://www.samsung.com/global/business-images/insights/2015/Samsung-5G-Vision-0.pdf (2015).

Technology Focus on Microwave Photonics. Nat. Photonics 5, 723 (2011).

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret & S. Sales . Microwave photonic signal processing. IEEE J. Lightw. Technol. 31, 571–586 (2013).

Y. Long & J. Wang . Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator. Opt. Express 23, 17739–17750 (2015).

Y. Long & J. Wang . All-optical tuning of a nonlinear silicon microring assisted microwave photonic filter: theory and experiment. Opt. Express 23, 17758–17771 (2015).

Y. Long, L. Zhou & J. Wang . Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator. Sci. Reports 6, 20215 (2016).

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany & A. De Rossi . Integrable microwave filter based on a photonic crystal delay line. Nat. Commun. 3, 1075 (2012).

F. Ohman, K. Yvind & J. Mørk . Slow Light in a Semiconductor Waveguide for True-Time Delay Applications in Microwave Photonics. IEEE Photon. Technol. Lett. 19, 1145–1157 (2007).

P. A. Morton & J. B. Khurgin. Microwave photonic delay line with separate tuning of the optical carrier. IEEE Photon. Technol. Lett. 21, 1686–1688 (2009).

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales & J. Capmany . Integrated microwave photonics. Lasers Photon. Rev. 7, 506–538 (2013).

I. Gasulla & J. Capmany . Microwave photonics applications of multicore fibers. Photonics J. 4, 877–888 (2012).

S. Garcia & I. Gasulla . Design of Heterogeneous Multicore fibers as sampled True Time Delay Lines. Opt. Lett. 40, 621–624 (2015).

F. Zeng & J. Yao . All-optical microwave filters using uniform fiber Bragg gratings with identical reflectivities. IEEE J. Lightw. Technol. 23, 1410 (2005).

C. Wang & J. Yao . Fiber Bragg gratings for microwave photonics subsystems. Opt. Express 21, 22868–22884 (2013).

I. Gasulla, D. Barrera & S. Sales . Microwave photonic devices based on multicore fibers. 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, 2014.

I. Gasulla, D. Barrera, J. Hervás, S. García & S. Sales . Multi-cavity Microwave Photonics devices built upon multicore fibres. 18th International Conference on Transparent Optical Networks (ICTON), Trento (Italy), pp. 1–4, 2016.

K. O. Hill & G. Meltz . Fiber Bragg grating technology fundamentals and overview. IEEE J. Lightw. Technol. 15, 1263–1276 (1997).

T. Erdogan . Fiber grating spectra. IEEE J. Lightw. Technol. 15, 1277–1294 (1997).

D. Barrera, I. Gasulla & S. Sales . Multipoint two-dimensional curvature optical fiber sensor based on a non-twisted homogeneous four-core fiber. IEEE J. Lightw. Technol. 33, 2445–2450 (2015).

T. Birks, B. Mangan, A. Diez, J. Cruz, S. Leon-Saval, J. Bland-Hawthorn & D. Murphy . Multicore optical fibres for astrophotonics. In CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD)d (Optical Society of America, 2011), paper JSIII2_1.

C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos & L. Zhang . Fibre Bragg gratings fabrication in four core fibres. Proc. SPIE 9886, Micro-Structured and Specialty Optical Fibres IV, 98860H (2016).

M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas & S. Barcelos . Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask. Electron. Lett. 31, 1488–1490 (1995).

M. Gallagher & U. Österberg . Time resolved 3.10 eV luminescence in germanium-doped silica glass. Appl. Phys. Lett. 63, 2987–2988 (1993).

T. Komukai & M. Nakazawa . Fabrication of high-quality long fiber Bragg grating by monitoring 3.1 eV radiation (400 nm) from GeO defects. IEEE Photon. Tech. Lett. 8, 1495–1497 (1996).

R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid & A. K. Kar . Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt. Express 15, 11691–11697 (2007).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem