- -

Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gasulla Mestre, Ivana es_ES
dc.contributor.author Barrera Vilar, David es_ES
dc.contributor.author Hervás-Peralta, Javier es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.date.accessioned 2018-06-11T04:32:24Z
dc.date.available 2018-06-11T04:32:24Z
dc.date.issued 2017 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/103793
dc.description.abstract [EN] The use of Spatial Division Multiplexing for Microwave Photonics signal processing is proposed and experimentally demonstrated, for the first time to our knowledge, based on the selective inscription of Bragg gratings in homogeneous multicore fibers. The fabricated devices behave as sampled true time delay elements for radiofrequency signals offering a wide range of operation possibilities within the same optical fiber. The key to processing flexibility comes from the implementation of novel multicavity configurations by inscribing a variety of different fiber Bragg gratings along the different cores of a 7-core fiber. This entails the development of the first fabrication method to inscribe high-quality gratings characterized by arbitrary frequency spectra and located in arbitrary longitudinal positions along the individual cores of a multicore fiber. Our work opens the way towards the development of unique compact fiber-based solutions that enable the implementation of a wide variety of 2D (spatial and wavelength diversity) signal processing functionalities that will be key in future fiber-wireless communications scenarios. We envisage that Microwave Photonics systems and networks will benefit from this technology in terms of compactness, operation versatility and performance stability. es_ES
dc.description.sponsorship We thank Prof. Jose Capmany for the thoughtful discussions and recommendations that greatly contribute to this work. This research was supported by the Spanish MINECO Projects TEC2014-60378-C2-1-R and TEC2015-62520-ERC, the Valencian Research Excellency Award Program GVA PROMETEO 2013/012, the Spanish MECD FPU Scholarship (FPU13/04675) for J. Hervas, and the Spanish MINECO Ramon y Cajal Program (RYC-2014-16247) for I. Gasulla. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Bragg Gratings es_ES
dc.subject Photonics es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep41727 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-60378-C2-1-R/ES/FOTONICA DE MICROONDAS PARA APLICACIONES EMERGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-62520-ERC/ES/INNOVACION EN DISPOSITIVOS BASADOS EN FIBRA OPTICA MULTINUCLEO PARA LA FOTONICA DE MICROONDAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F012/ES/TECNOLOGIAS DE NUEVA GENERACION EN FOTONICA DE MICROONDAS (NEXT GENERATION MICROWAVE PHOTONIC TECHNOLOGIES)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2014-16247/ES/RYC-2014-16247/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Gasulla Mestre, I.; Barrera Vilar, D.; Hervás-Peralta, J.; Sales Maicas, S. (2017). Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers. Scientific Reports. 7(41727):1-10. https://doi.org/10.1038/srep41727 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/srep41727 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 41727 es_ES
dc.identifier.pmid 28134304 en_EN
dc.identifier.pmcid PMC5278386 en_EN
dc.relation.pasarela S\336271 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Samsung Electronics Co, “5G Vision”, available at http://www.samsung.com/global/business-images/insights/2015/Samsung-5G-Vision-0.pdf (2015). es_ES
dc.description.references Technology Focus on Microwave Photonics. Nat. Photonics 5, 723 (2011). es_ES
dc.description.references J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret & S. Sales . Microwave photonic signal processing. IEEE J. Lightw. Technol. 31, 571–586 (2013). es_ES
dc.description.references Y. Long & J. Wang . Ultra-high peak rejection notch microwave photonic filter using a single silicon microring resonator. Opt. Express 23, 17739–17750 (2015). es_ES
dc.description.references Y. Long & J. Wang . All-optical tuning of a nonlinear silicon microring assisted microwave photonic filter: theory and experiment. Opt. Express 23, 17758–17771 (2015). es_ES
dc.description.references Y. Long, L. Zhou & J. Wang . Photonic-assisted microwave signal multiplication and modulation using a silicon Mach–Zehnder modulator. Sci. Reports 6, 20215 (2016). es_ES
dc.description.references J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany & A. De Rossi . Integrable microwave filter based on a photonic crystal delay line. Nat. Commun. 3, 1075 (2012). es_ES
dc.description.references F. Ohman, K. Yvind & J. Mørk . Slow Light in a Semiconductor Waveguide for True-Time Delay Applications in Microwave Photonics. IEEE Photon. Technol. Lett. 19, 1145–1157 (2007). es_ES
dc.description.references P. A. Morton & J. B. Khurgin. Microwave photonic delay line with separate tuning of the optical carrier. IEEE Photon. Technol. Lett. 21, 1686–1688 (2009). es_ES
dc.description.references D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales & J. Capmany . Integrated microwave photonics. Lasers Photon. Rev. 7, 506–538 (2013). es_ES
dc.description.references I. Gasulla & J. Capmany . Microwave photonics applications of multicore fibers. Photonics J. 4, 877–888 (2012). es_ES
dc.description.references S. Garcia & I. Gasulla . Design of Heterogeneous Multicore fibers as sampled True Time Delay Lines. Opt. Lett. 40, 621–624 (2015). es_ES
dc.description.references F. Zeng & J. Yao . All-optical microwave filters using uniform fiber Bragg gratings with identical reflectivities. IEEE J. Lightw. Technol. 23, 1410 (2005). es_ES
dc.description.references C. Wang & J. Yao . Fiber Bragg gratings for microwave photonics subsystems. Opt. Express 21, 22868–22884 (2013). es_ES
dc.description.references I. Gasulla, D. Barrera & S. Sales . Microwave photonic devices based on multicore fibers. 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, 2014. es_ES
dc.description.references I. Gasulla, D. Barrera, J. Hervás, S. García & S. Sales . Multi-cavity Microwave Photonics devices built upon multicore fibres. 18th International Conference on Transparent Optical Networks (ICTON), Trento (Italy), pp. 1–4, 2016. es_ES
dc.description.references K. O. Hill & G. Meltz . Fiber Bragg grating technology fundamentals and overview. IEEE J. Lightw. Technol. 15, 1263–1276 (1997). es_ES
dc.description.references T. Erdogan . Fiber grating spectra. IEEE J. Lightw. Technol. 15, 1277–1294 (1997). es_ES
dc.description.references D. Barrera, I. Gasulla & S. Sales . Multipoint two-dimensional curvature optical fiber sensor based on a non-twisted homogeneous four-core fiber. IEEE J. Lightw. Technol. 33, 2445–2450 (2015). es_ES
dc.description.references T. Birks, B. Mangan, A. Diez, J. Cruz, S. Leon-Saval, J. Bland-Hawthorn & D. Murphy . Multicore optical fibres for astrophotonics. In CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD)d (Optical Society of America, 2011), paper JSIII2_1. es_ES
dc.description.references C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos & L. Zhang . Fibre Bragg gratings fabrication in four core fibres. Proc. SPIE 9886, Micro-Structured and Specialty Optical Fibres IV, 98860H (2016). es_ES
dc.description.references M. J. Cole, W. H. Loh, R. I. Laming, M. N. Zervas & S. Barcelos . Moving fibre/phase mask-scanning beam technique for enhanced flexibility in producing fibre gratings with uniform phase mask. Electron. Lett. 31, 1488–1490 (1995). es_ES
dc.description.references M. Gallagher & U. Österberg . Time resolved 3.10 eV luminescence in germanium-doped silica glass. Appl. Phys. Lett. 63, 2987–2988 (1993). es_ES
dc.description.references T. Komukai & M. Nakazawa . Fabrication of high-quality long fiber Bragg grating by monitoring 3.1 eV radiation (400 nm) from GeO defects. IEEE Photon. Tech. Lett. 8, 1495–1497 (1996). es_ES
dc.description.references R. R. Thomson, H. T. Bookey, N. D. Psaila, A. Fender, S. Campbell, W. N. MacPherson, J. S. Barton, D. T. Reid & A. K. Kar . Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt. Express 15, 11691–11697 (2007). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem