- -

Design and multidimensional extension of iterative methods for solving nonlinear problems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Design and multidimensional extension of iterative methods for solving nonlinear problems

Show full item record

Artidiello, S.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, MP. (2017). Design and multidimensional extension of iterative methods for solving nonlinear problems. Applied Mathematics and Computation. 293:194-203. doi:10.1016/j.amc.2016.08.034

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/103797

Files in this item

Item Metadata

Title: Design and multidimensional extension of iterative methods for solving nonlinear problems
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Embargo end date: 2019-01-15
Abstract:
[EN] In this paper, a three-step iterative method with sixth-order local convergence for approximating the solution of a nonlinear system is presented. From Ostrowski¿s scheme adding one step of Newton with ¿frozen¿ ...[+]
Subjects: Nonlinear systems , Iterative method , Convergence , Efficiency index , Bratu s problem
Copyrigths: Reserva de todos los derechos
Source:
Applied Mathematics and Computation. (issn: 0096-3003 )
DOI: 10.1016/j.amc.2016.08.034
Publisher:
Elsevier
Publisher version: http://dx.doi.org/10.1016/j.amc.2016.08.034
Thanks:
This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and FONDOCYT 2014-1C1-088 Republica Dominicana.
Type: Artículo

This item appears in the following Collection(s)

Show full item record