- -

Design and multidimensional extension of iterative methods for solving nonlinear problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design and multidimensional extension of iterative methods for solving nonlinear problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Artidiello, S. es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Vassileva, M. P. es_ES
dc.date.accessioned 2018-06-11T04:33:40Z
dc.date.available 2018-06-11T04:33:40Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0096-3003 es_ES
dc.identifier.uri http://hdl.handle.net/10251/103797
dc.description.abstract [EN] In this paper, a three-step iterative method with sixth-order local convergence for approximating the solution of a nonlinear system is presented. From Ostrowski¿s scheme adding one step of Newton with ¿frozen¿ derivative and by using a divided difference operator we construct an iterative scheme of order six for solving nonlinear systems. The computational efficiency of the new method is compared with some known ones, obtaining good conclusions. Numerical comparisons are made with other existing methods, on standard nonlinear systems and the classical 1D-Bratu problem by transforming it in a nonlinear system by using finite differences. From this numerical examples, we confirm the theoretical results and show the performance of the presented scheme. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and FONDOCYT 2014-1C1-088 Republica Dominicana. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Mathematics and Computation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear systems es_ES
dc.subject Iterative method es_ES
dc.subject Convergence es_ES
dc.subject Efficiency index es_ES
dc.subject Bratu s problem es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Design and multidimensional extension of iterative methods for solving nonlinear problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.amc.2016.08.034 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FONDOCYT//2014-1C1-088/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-01-15 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Artidiello, S.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, MP. (2017). Design and multidimensional extension of iterative methods for solving nonlinear problems. Applied Mathematics and Computation. 293:194-203. https://doi.org/10.1016/j.amc.2016.08.034 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.amc.2016.08.034 es_ES
dc.description.upvformatpinicio 194 es_ES
dc.description.upvformatpfin 203 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 293 es_ES
dc.relation.pasarela S\316636 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem