Mostrar el registro sencillo del ítem
dc.contributor.author | Artidiello, S. | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.contributor.author | Vassileva, M. P. | es_ES |
dc.date.accessioned | 2018-06-11T04:33:40Z | |
dc.date.available | 2018-06-11T04:33:40Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0096-3003 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/103797 | |
dc.description.abstract | [EN] In this paper, a three-step iterative method with sixth-order local convergence for approximating the solution of a nonlinear system is presented. From Ostrowski¿s scheme adding one step of Newton with ¿frozen¿ derivative and by using a divided difference operator we construct an iterative scheme of order six for solving nonlinear systems. The computational efficiency of the new method is compared with some known ones, obtaining good conclusions. Numerical comparisons are made with other existing methods, on standard nonlinear systems and the classical 1D-Bratu problem by transforming it in a nonlinear system by using finite differences. From this numerical examples, we confirm the theoretical results and show the performance of the presented scheme. | es_ES |
dc.description.sponsorship | This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P and FONDOCYT 2014-1C1-088 Republica Dominicana. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Mathematics and Computation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear systems | es_ES |
dc.subject | Iterative method | es_ES |
dc.subject | Convergence | es_ES |
dc.subject | Efficiency index | es_ES |
dc.subject | Bratu s problem | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Design and multidimensional extension of iterative methods for solving nonlinear problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.amc.2016.08.034 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FONDOCYT//2014-1C1-088/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2019-01-15 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Artidiello, S.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, MP. (2017). Design and multidimensional extension of iterative methods for solving nonlinear problems. Applied Mathematics and Computation. 293:194-203. https://doi.org/10.1016/j.amc.2016.08.034 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.amc.2016.08.034 | es_ES |
dc.description.upvformatpinicio | 194 | es_ES |
dc.description.upvformatpfin | 203 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 293 | es_ES |
dc.relation.pasarela | S\316636 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fondo Nacional de Innovación y Desarrollo Científico y Tecnológico, República Dominicana | es_ES |