- -

On the relation between the external structure and the internal characteristics in the near-nozzle field of diesel sprays

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the relation between the external structure and the internal characteristics in the near-nozzle field of diesel sprays

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Benajes, Jesús es_ES
dc.contributor.author Salvador, Francisco Javier es_ES
dc.contributor.author Carreres, M. es_ES
dc.contributor.author Jaramillo-Císcar, David es_ES
dc.date.accessioned 2018-06-15T04:22:39Z
dc.date.available 2018-06-15T04:22:39Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0954-4070 es_ES
dc.identifier.uri http://hdl.handle.net/10251/104126
dc.description.abstract [EN] In this paper, a high-resolution visualization technique has been used in combination with an extensively validated 0D model in order to relate the external structure of a diesel spray to the internal properties in the vicinity of the nozzle. For this purpose, three single-hole convergent nozzles with different diameters have been tested for several pressure conditions. The analysis of the obtained images shows that the spray width significantly changes along the very first millimeters of the spray. From the high resolution images captured, two parameters have been evaluated. The first one is the external non-perturbed length, where droplet detachment has not been observed. The second one is a transitional length, defined as the axial position where the spray width increases linearly after a transient behavior, making it possible to establish a spray cone angle definition. Furthermore, the internal liquid core length has been estimated for these nozzles using an extensively validated zero-dimensional model. The intact liquid core length has proved to be correlated with both the transitional length and the non-perturbed length with a very high degree of reliability. In the case of the transitional length, a quadratic correlation has been observed, whereas a linear relationship has been confirmed between the intact core length and the non-perturbed length. The results presented here may help to shed light on better understanding of such a complex process as atomization. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Ministerio de Economia y Competitividad, Spanish Government, under the project 'Comprension de la influencia de combustibles no convencionales en el proceso de injeccion y combustion tipo diesel' (project number TRA2012-36932) The PhD studies of D. Jaramillo have been funded by "Conselleria d'Educacio'Cultura i Esports'' of "Generalitat Valenciana'', Spain, by means of ''Programa Vali+ d per a personal investigador en formacio''. Reference ACIF/2015/040.
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Diesel spray es_ES
dc.subject Atomization es_ES
dc.subject Near-nozzle es_ES
dc.subject High-pressure injection es_ES
dc.subject Break-up length es_ES
dc.subject Intact liquid core es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title On the relation between the external structure and the internal characteristics in the near-nozzle field of diesel sprays es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0954407016639464 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2012-36932/ES/COMPRENSION DE LA INFLUENCIA DE COMBUSTIBLES NO CONVENCIONALES EN EL PROCESO DE INYECCION Y COMBUSTION TIPO DIESEL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2015%2F040/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Benajes, J.; Salvador, FJ.; Carreres, M.; Jaramillo-Císcar, D. (2017). On the relation between the external structure and the internal characteristics in the near-nozzle field of diesel sprays. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering. 231(3):360-371. https://doi.org/10.1177/0954407016639464 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1177/0954407016639464 es_ES
dc.description.upvformatpinicio 360 es_ES
dc.description.upvformatpfin 371 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 231 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\325028 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Desantes, J. M., Payri, R., Salvador, F. J., & Gil, A. (2006). Development and validation of a theoretical model for diesel spray penetration. Fuel, 85(7-8), 910-917. doi:10.1016/j.fuel.2005.10.023 es_ES
dc.description.references Kim, H. J., Park, S. H., & Lee, C. S. (2010). A study on the macroscopic spray behavior and atomization characteristics of biodiesel and dimethyl ether sprays under increased ambient pressure. Fuel Processing Technology, 91(3), 354-363. doi:10.1016/j.fuproc.2009.11.007 es_ES
dc.description.references Klein-Douwel, R. J. H., Frijters, P. J. M., Seykens, X. L. J., Somers, L. M. T., & Baert, R. S. G. (2009). Gas Density and Rail Pressure Effects on Diesel Spray Growth from a Heavy-Duty Common Rail Injector†. Energy & Fuels, 23(4), 1832-1842. doi:10.1021/ef8003569 es_ES
dc.description.references Lee, C. S., Lee, K. H., Reitz, R. D., & Park, S. W. (2006). EFFECT OF SPLIT INJECTION ON THE MACROSCOPIC DEVELOPMENT AND ATOMIZATION CHARACTERISTICS OF A DIESEL SPRAY INJECTED THROUGH A COMMON-RAIL SYSTEM. Atomization and Sprays, 16(5), 543-562. doi:10.1615/atomizspr.v16.i5.50 es_ES
dc.description.references Desantes, J. M., Payri, R., Salvador, F. J., & De la Morena, J. (2010). Influence of cavitation phenomenon on primary break-up and spray behavior at stationary conditions. Fuel, 89(10), 3033-3041. doi:10.1016/j.fuel.2010.06.004 es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & Soare, V. (2005). Determination of diesel sprays characteristics in real engine in-cylinder air density and pressure conditions. Journal of Mechanical Science and Technology, 19(11), 2040-2052. doi:10.1007/bf02916497 es_ES
dc.description.references Desantes, J. M., Salvador, F. J., López, J. J., & De la Morena, J. (2010). Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids, 50(2), 233-246. doi:10.1007/s00348-010-0919-8 es_ES
dc.description.references Salvador, F. J., Ruiz, S., Gimeno, J., & De la Morena, J. (2011). Estimation of a suitable Schmidt number range in diesel sprays at high injection pressure. International Journal of Thermal Sciences, 50(9), 1790-1798. doi:10.1016/j.ijthermalsci.2011.03.030 es_ES
dc.description.references Linne, M. A., Paciaroni, M., Berrocal, E., & Sedarsky, D. (2009). Ballistic imaging of liquid breakup processes in dense sprays. Proceedings of the Combustion Institute, 32(2), 2147-2161. doi:10.1016/j.proci.2008.07.040 es_ES
dc.description.references Kastengren, A. L., Tilocco, F. Z., Duke, D. J., Powell, C. F., Zhang, X., & Moon, S. (2014). TIME-RESOLVED X-RAY RADIOGRAPHY OF SPRAYS FROM ENGINE COMBUSTION NETWORK SPRAY A DIESEL INJECTORS. Atomization and Sprays, 24(3), 251-272. doi:10.1615/atomizspr.2013008642 es_ES
dc.description.references Kastengren, A., & Powell, C. F. (2014). Synchrotron X-ray techniques for fluid dynamics. Experiments in Fluids, 55(3). doi:10.1007/s00348-014-1686-8 es_ES
dc.description.references Som, S., & Aggarwal, S. K. (2010). Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines. Combustion and Flame, 157(6), 1179-1193. doi:10.1016/j.combustflame.2010.02.018 es_ES
dc.description.references Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005 es_ES
dc.description.references Shinjo, J., & Umemura, A. (2010). Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation. International Journal of Multiphase Flow, 36(7), 513-532. doi:10.1016/j.ijmultiphaseflow.2010.03.008 es_ES
dc.description.references Shinjo, J., & Umemura, A. (2011). Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects). Proceedings of the Combustion Institute, 33(2), 2089-2097. doi:10.1016/j.proci.2010.07.006 es_ES
dc.description.references Ménard, T., Tanguy, S., & Berlemont, A. (2007). Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. International Journal of Multiphase Flow, 33(5), 510-524. doi:10.1016/j.ijmultiphaseflow.2006.11.001 es_ES
dc.description.references Bermúdez, V., Payri, R., Salvador, F. J., & Plazas, A. H. (2005). Study of the influence of nozzle seat type on injection rate and spray behaviour. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219(5), 677-689. doi:10.1243/095440705x28303 es_ES
dc.description.references Payri, F., Bermúdez, V., Payri, R., & Salvador, F. J. (2004). The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel, 83(4-5), 419-431. doi:10.1016/j.fuel.2003.09.010 es_ES
dc.description.references Payri, R., Molina, S., Salvador, F. J., & Gimeno, J. (2004). A study of the relation between nozzle geometry, internal flow and sprays characteristics in diesel fuel injection systems. KSME International Journal, 18(7), 1222-1235. doi:10.1007/bf02983297 es_ES
dc.description.references Salvador, F. J., Ruiz, S., Salavert, J., & De la Morena, J. (2012). Consequences of using biodiesel on the injection and air–fuel mixing processes in diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(8), 1130-1141. doi:10.1177/0954407012463667 es_ES
dc.description.references Basak, N., & Das, D. (2009). Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides O.U.001 in an annular photobioreactor: A case study. Biomass and Bioenergy, 33(6-7), 911-919. doi:10.1016/j.biombioe.2009.02.007 es_ES
dc.description.references Salvador, F. J., Romero, J.-V., Roselló, M.-D., & Martínez-López, J. (2010). Validation of a code for modeling cavitation phenomena in Diesel injector nozzles. Mathematical and Computer Modelling, 52(7-8), 1123-1132. doi:10.1016/j.mcm.2010.02.027 es_ES
dc.description.references Andriotis, A., & Gavaises, M. (2009). INFLUENCE OF VORTEX FLOW AND CAVITATION ON NEAR-NOZZLE DIESEL SPRAY DISPERSION ANGLE. Atomization and Sprays, 19(3), 247-261. doi:10.1615/atomizspr.v19.i3.30 es_ES
dc.description.references Salvador, F. J., Hoyas, S., Novella, R., & Martínez-López, J. (2011). Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(4), 545-563. doi:10.1177/09544070jauto1569 es_ES
dc.description.references Salvador, F. J., Martínez-López, J., Caballer, M., & De Alfonso, C. (2013). Study of the influence of the needle lift on the internal flow and cavitation phenomenon in diesel injector nozzles by CFD using RANS methods. Energy Conversion and Management, 66, 246-256. doi:10.1016/j.enconman.2012.10.011 es_ES
dc.description.references Hiroyasu, H. (2000). SPRAY BREAKUP MECHANISM FROM THE HOLE-TYPE NOZZLE AND ITS APPLICATIONS. Atomization and Sprays, 10(3-5), 511-527. doi:10.1615/atomizspr.v10.i3-5.130 es_ES
dc.description.references Sou, A., Hosokawa, S., & Tomiyama, A. (2007). Effects of cavitation in a nozzle on liquid jet atomization. International Journal of Heat and Mass Transfer, 50(17-18), 3575-3582. doi:10.1016/j.ijheatmasstransfer.2006.12.033 es_ES
dc.description.references Macian, V., Bermudez, V., Payri, R., & Gimeno, J. (2003). NEW TECHNIQUE FOR DETERMINATION OF INTERNAL GEOMETRY OF A DIESEL NOZZLE WITH THE USE OF SILICONE METHODOLOGY. Experimental Techniques, 27(2), 39-43. doi:10.1111/j.1747-1567.2003.tb00107.x es_ES
dc.description.references Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/tsmc.1979.4310076 es_ES
dc.description.references Payri, R., Tormos, B., Salvador, F. J., & Araneo, L. (2008). Spray droplet velocity characterization for convergent nozzles with three different diameters. Fuel, 87(15-16), 3176-3182. doi:10.1016/j.fuel.2008.05.028 es_ES
dc.description.references DELACOURT, E., DESMET, B., & BESSON, B. (2005). Characterisation of very high pressure diesel sprays using digital imaging techniques. Fuel, 84(7-8), 859-867. doi:10.1016/j.fuel.2004.12.003 es_ES
dc.description.references Yue, Y., Powell, C. F., Poola, R., Wang, J., & Schaller, J. K. (2001). QUANTITATIVE MEASUREMENTS OF DIESEL FUEL SPRAY CHARACTERISTICS IN THE NEAR-NOZZLE REGION USING X-RAY ABSORPTION. Atomization and Sprays, 11(4), 471-490. doi:10.1615/atomizspr.v11.i4.100 es_ES
dc.description.references Desantes, J. M., Payri, R., Garcia, J. M., & Salvador, F. J. (2007). A contribution to the understanding of isothermal diesel spray dynamics. Fuel, 86(7-8), 1093-1101. doi:10.1016/j.fuel.2006.10.011 es_ES
dc.description.references Desantes, J. M., Arregle, J., Lopez, J. J., & Cronhjort, A. (2006). SCALING LAWS FOR FREE TURBULENT GAS JETS AND DIESEL-LIKE SPRAYS. Atomization and Sprays, 16(4), 443-474. doi:10.1615/atomizspr.v16.i4.60 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem