Mostrar el registro sencillo del ítem
dc.contributor.author | Benajes, Jesús | es_ES |
dc.contributor.author | Salvador, Francisco Javier | es_ES |
dc.contributor.author | Carreres, M. | es_ES |
dc.contributor.author | Jaramillo-Císcar, David | es_ES |
dc.date.accessioned | 2018-06-15T04:22:39Z | |
dc.date.available | 2018-06-15T04:22:39Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0954-4070 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/104126 | |
dc.description.abstract | [EN] In this paper, a high-resolution visualization technique has been used in combination with an extensively validated 0D model in order to relate the external structure of a diesel spray to the internal properties in the vicinity of the nozzle. For this purpose, three single-hole convergent nozzles with different diameters have been tested for several pressure conditions. The analysis of the obtained images shows that the spray width significantly changes along the very first millimeters of the spray. From the high resolution images captured, two parameters have been evaluated. The first one is the external non-perturbed length, where droplet detachment has not been observed. The second one is a transitional length, defined as the axial position where the spray width increases linearly after a transient behavior, making it possible to establish a spray cone angle definition. Furthermore, the internal liquid core length has been estimated for these nozzles using an extensively validated zero-dimensional model. The intact liquid core length has proved to be correlated with both the transitional length and the non-perturbed length with a very high degree of reliability. In the case of the transitional length, a quadratic correlation has been observed, whereas a linear relationship has been confirmed between the intact core length and the non-perturbed length. The results presented here may help to shed light on better understanding of such a complex process as atomization. | es_ES |
dc.description.sponsorship | The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Ministerio de Economia y Competitividad, Spanish Government, under the project 'Comprension de la influencia de combustibles no convencionales en el proceso de injeccion y combustion tipo diesel' (project number TRA2012-36932) The PhD studies of D. Jaramillo have been funded by "Conselleria d'Educacio'Cultura i Esports'' of "Generalitat Valenciana'', Spain, by means of ''Programa Vali+ d per a personal investigador en formacio''. Reference ACIF/2015/040. | |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Diesel spray | es_ES |
dc.subject | Atomization | es_ES |
dc.subject | Near-nozzle | es_ES |
dc.subject | High-pressure injection | es_ES |
dc.subject | Break-up length | es_ES |
dc.subject | Intact liquid core | es_ES |
dc.subject.classification | INGENIERIA AEROESPACIAL | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | On the relation between the external structure and the internal characteristics in the near-nozzle field of diesel sprays | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0954407016639464 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2012-36932/ES/COMPRENSION DE LA INFLUENCIA DE COMBUSTIBLES NO CONVENCIONALES EN EL PROCESO DE INYECCION Y COMBUSTION TIPO DIESEL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2015%2F040/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Benajes, J.; Salvador, FJ.; Carreres, M.; Jaramillo-Císcar, D. (2017). On the relation between the external structure and the internal characteristics in the near-nozzle field of diesel sprays. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering. 231(3):360-371. https://doi.org/10.1177/0954407016639464 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1177/0954407016639464 | es_ES |
dc.description.upvformatpinicio | 360 | es_ES |
dc.description.upvformatpfin | 371 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 231 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\325028 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Desantes, J. M., Payri, R., Salvador, F. J., & Gil, A. (2006). Development and validation of a theoretical model for diesel spray penetration. Fuel, 85(7-8), 910-917. doi:10.1016/j.fuel.2005.10.023 | es_ES |
dc.description.references | Kim, H. J., Park, S. H., & Lee, C. S. (2010). A study on the macroscopic spray behavior and atomization characteristics of biodiesel and dimethyl ether sprays under increased ambient pressure. Fuel Processing Technology, 91(3), 354-363. doi:10.1016/j.fuproc.2009.11.007 | es_ES |
dc.description.references | Klein-Douwel, R. J. H., Frijters, P. J. M., Seykens, X. L. J., Somers, L. M. T., & Baert, R. S. G. (2009). Gas Density and Rail Pressure Effects on Diesel Spray Growth from a Heavy-Duty Common Rail Injector†. Energy & Fuels, 23(4), 1832-1842. doi:10.1021/ef8003569 | es_ES |
dc.description.references | Lee, C. S., Lee, K. H., Reitz, R. D., & Park, S. W. (2006). EFFECT OF SPLIT INJECTION ON THE MACROSCOPIC DEVELOPMENT AND ATOMIZATION CHARACTERISTICS OF A DIESEL SPRAY INJECTED THROUGH A COMMON-RAIL SYSTEM. Atomization and Sprays, 16(5), 543-562. doi:10.1615/atomizspr.v16.i5.50 | es_ES |
dc.description.references | Desantes, J. M., Payri, R., Salvador, F. J., & De la Morena, J. (2010). Influence of cavitation phenomenon on primary break-up and spray behavior at stationary conditions. Fuel, 89(10), 3033-3041. doi:10.1016/j.fuel.2010.06.004 | es_ES |
dc.description.references | Payri, R., Salvador, F. J., Gimeno, J., & Soare, V. (2005). Determination of diesel sprays characteristics in real engine in-cylinder air density and pressure conditions. Journal of Mechanical Science and Technology, 19(11), 2040-2052. doi:10.1007/bf02916497 | es_ES |
dc.description.references | Desantes, J. M., Salvador, F. J., López, J. J., & De la Morena, J. (2010). Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids, 50(2), 233-246. doi:10.1007/s00348-010-0919-8 | es_ES |
dc.description.references | Salvador, F. J., Ruiz, S., Gimeno, J., & De la Morena, J. (2011). Estimation of a suitable Schmidt number range in diesel sprays at high injection pressure. International Journal of Thermal Sciences, 50(9), 1790-1798. doi:10.1016/j.ijthermalsci.2011.03.030 | es_ES |
dc.description.references | Linne, M. A., Paciaroni, M., Berrocal, E., & Sedarsky, D. (2009). Ballistic imaging of liquid breakup processes in dense sprays. Proceedings of the Combustion Institute, 32(2), 2147-2161. doi:10.1016/j.proci.2008.07.040 | es_ES |
dc.description.references | Kastengren, A. L., Tilocco, F. Z., Duke, D. J., Powell, C. F., Zhang, X., & Moon, S. (2014). TIME-RESOLVED X-RAY RADIOGRAPHY OF SPRAYS FROM ENGINE COMBUSTION NETWORK SPRAY A DIESEL INJECTORS. Atomization and Sprays, 24(3), 251-272. doi:10.1615/atomizspr.2013008642 | es_ES |
dc.description.references | Kastengren, A., & Powell, C. F. (2014). Synchrotron X-ray techniques for fluid dynamics. Experiments in Fluids, 55(3). doi:10.1007/s00348-014-1686-8 | es_ES |
dc.description.references | Som, S., & Aggarwal, S. K. (2010). Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines. Combustion and Flame, 157(6), 1179-1193. doi:10.1016/j.combustflame.2010.02.018 | es_ES |
dc.description.references | Lebas, R., Menard, T., Beau, P. A., Berlemont, A., & Demoulin, F. X. (2009). Numerical simulation of primary break-up and atomization: DNS and modelling study. International Journal of Multiphase Flow, 35(3), 247-260. doi:10.1016/j.ijmultiphaseflow.2008.11.005 | es_ES |
dc.description.references | Shinjo, J., & Umemura, A. (2010). Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation. International Journal of Multiphase Flow, 36(7), 513-532. doi:10.1016/j.ijmultiphaseflow.2010.03.008 | es_ES |
dc.description.references | Shinjo, J., & Umemura, A. (2011). Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects). Proceedings of the Combustion Institute, 33(2), 2089-2097. doi:10.1016/j.proci.2010.07.006 | es_ES |
dc.description.references | Ménard, T., Tanguy, S., & Berlemont, A. (2007). Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet. International Journal of Multiphase Flow, 33(5), 510-524. doi:10.1016/j.ijmultiphaseflow.2006.11.001 | es_ES |
dc.description.references | Bermúdez, V., Payri, R., Salvador, F. J., & Plazas, A. H. (2005). Study of the influence of nozzle seat type on injection rate and spray behaviour. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 219(5), 677-689. doi:10.1243/095440705x28303 | es_ES |
dc.description.references | Payri, F., Bermúdez, V., Payri, R., & Salvador, F. J. (2004). The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles. Fuel, 83(4-5), 419-431. doi:10.1016/j.fuel.2003.09.010 | es_ES |
dc.description.references | Payri, R., Molina, S., Salvador, F. J., & Gimeno, J. (2004). A study of the relation between nozzle geometry, internal flow and sprays characteristics in diesel fuel injection systems. KSME International Journal, 18(7), 1222-1235. doi:10.1007/bf02983297 | es_ES |
dc.description.references | Salvador, F. J., Ruiz, S., Salavert, J., & De la Morena, J. (2012). Consequences of using biodiesel on the injection and air–fuel mixing processes in diesel engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(8), 1130-1141. doi:10.1177/0954407012463667 | es_ES |
dc.description.references | Basak, N., & Das, D. (2009). Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides O.U.001 in an annular photobioreactor: A case study. Biomass and Bioenergy, 33(6-7), 911-919. doi:10.1016/j.biombioe.2009.02.007 | es_ES |
dc.description.references | Salvador, F. J., Romero, J.-V., Roselló, M.-D., & Martínez-López, J. (2010). Validation of a code for modeling cavitation phenomena in Diesel injector nozzles. Mathematical and Computer Modelling, 52(7-8), 1123-1132. doi:10.1016/j.mcm.2010.02.027 | es_ES |
dc.description.references | Andriotis, A., & Gavaises, M. (2009). INFLUENCE OF VORTEX FLOW AND CAVITATION ON NEAR-NOZZLE DIESEL SPRAY DISPERSION ANGLE. Atomization and Sprays, 19(3), 247-261. doi:10.1615/atomizspr.v19.i3.30 | es_ES |
dc.description.references | Salvador, F. J., Hoyas, S., Novella, R., & Martínez-López, J. (2011). Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 225(4), 545-563. doi:10.1177/09544070jauto1569 | es_ES |
dc.description.references | Salvador, F. J., Martínez-López, J., Caballer, M., & De Alfonso, C. (2013). Study of the influence of the needle lift on the internal flow and cavitation phenomenon in diesel injector nozzles by CFD using RANS methods. Energy Conversion and Management, 66, 246-256. doi:10.1016/j.enconman.2012.10.011 | es_ES |
dc.description.references | Hiroyasu, H. (2000). SPRAY BREAKUP MECHANISM FROM THE HOLE-TYPE NOZZLE AND ITS APPLICATIONS. Atomization and Sprays, 10(3-5), 511-527. doi:10.1615/atomizspr.v10.i3-5.130 | es_ES |
dc.description.references | Sou, A., Hosokawa, S., & Tomiyama, A. (2007). Effects of cavitation in a nozzle on liquid jet atomization. International Journal of Heat and Mass Transfer, 50(17-18), 3575-3582. doi:10.1016/j.ijheatmasstransfer.2006.12.033 | es_ES |
dc.description.references | Macian, V., Bermudez, V., Payri, R., & Gimeno, J. (2003). NEW TECHNIQUE FOR DETERMINATION OF INTERNAL GEOMETRY OF A DIESEL NOZZLE WITH THE USE OF SILICONE METHODOLOGY. Experimental Techniques, 27(2), 39-43. doi:10.1111/j.1747-1567.2003.tb00107.x | es_ES |
dc.description.references | Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66. doi:10.1109/tsmc.1979.4310076 | es_ES |
dc.description.references | Payri, R., Tormos, B., Salvador, F. J., & Araneo, L. (2008). Spray droplet velocity characterization for convergent nozzles with three different diameters. Fuel, 87(15-16), 3176-3182. doi:10.1016/j.fuel.2008.05.028 | es_ES |
dc.description.references | DELACOURT, E., DESMET, B., & BESSON, B. (2005). Characterisation of very high pressure diesel sprays using digital imaging techniques. Fuel, 84(7-8), 859-867. doi:10.1016/j.fuel.2004.12.003 | es_ES |
dc.description.references | Yue, Y., Powell, C. F., Poola, R., Wang, J., & Schaller, J. K. (2001). QUANTITATIVE MEASUREMENTS OF DIESEL FUEL SPRAY CHARACTERISTICS IN THE NEAR-NOZZLE REGION USING X-RAY ABSORPTION. Atomization and Sprays, 11(4), 471-490. doi:10.1615/atomizspr.v11.i4.100 | es_ES |
dc.description.references | Desantes, J. M., Payri, R., Garcia, J. M., & Salvador, F. J. (2007). A contribution to the understanding of isothermal diesel spray dynamics. Fuel, 86(7-8), 1093-1101. doi:10.1016/j.fuel.2006.10.011 | es_ES |
dc.description.references | Desantes, J. M., Arregle, J., Lopez, J. J., & Cronhjort, A. (2006). SCALING LAWS FOR FREE TURBULENT GAS JETS AND DIESEL-LIKE SPRAYS. Atomization and Sprays, 16(4), 443-474. doi:10.1615/atomizspr.v16.i4.60 | es_ES |