Mostrar el registro sencillo del ítem
dc.contributor.author | De Sa-Riechi, Jorge Luiz | es_ES |
dc.contributor.author | Macian Martinez, Vicente | es_ES |
dc.contributor.author | Tormos, B. | es_ES |
dc.contributor.author | Avila, Claudio | es_ES |
dc.date.accessioned | 2018-06-15T04:25:14Z | |
dc.date.available | 2018-06-15T04:25:14Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0160-5682 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/104132 | |
dc.description.abstract | [EN] Optimizing the average annual cost of a bus fleet has become an increasing concern in transport companies management around the world. Nowadays, there are many tools available to assist managerial decisions, and one of the most used is the cost analysis of the life cycle of an asset, known as ``life cycle cost¿¿. Characterized by performing deterministic analysis of the situation, it allows the administration to evaluate the process of fleet replacement but is limited by not contemplating certain intrinsic variations related to vehicles and for disregarding variables related to exigencies of fleet use. The main purpose of this study is to develop a combined model of support to asset management based in the association of the life cycle cost tool and the mathematical model of Monte Carlo simulation, by performing a stochastic analysis considering both age and average annual mileage for optimum vehicle replacement. The utilized method was applied in a Spanish urban transport fleet, and the results indicate that the use of the stochastic model was more effective than the use of the deterministic model. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group - Macmillan Publishers | es_ES |
dc.relation.ispartof | Journal of the Operational Research Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Fleet replacement | es_ES |
dc.subject | Optimization | es_ES |
dc.subject | Operation and maintenance costs | es_ES |
dc.subject | Transport | es_ES |
dc.subject | Life cycle cost analysis | es_ES |
dc.subject | Monte Carlo simulation | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Optimal fleet replacement: A case study on a Spanish urban transport fleet | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1057/s41274-017-0236-1 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-08-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | De Sa-Riechi, JL.; Macian Martinez, V.; Tormos, B.; Avila, C. (2017). Optimal fleet replacement: A case study on a Spanish urban transport fleet. Journal of the Operational Research Society. 68(8):886-894. doi:10.1057/s41274-017-0236-1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1057/s41274-017-0236-1 | es_ES |
dc.description.upvformatpinicio | 886 | es_ES |
dc.description.upvformatpfin | 894 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 68 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.pasarela | S\341941 | es_ES |
dc.description.references | Avila da S., C. R., & Beck, A. T. (2015). New method for efficient Monte Carlo–Neumann solution of linear stochastic systems. Probabilistic Engineering Mechanics, 40, 90-96. doi:10.1016/j.probengmech.2015.02.006 | es_ES |
dc.description.references | Boudart, J., & Figliozzi, M. (2012). Key Variables Affecting Decisions of Bus Replacement Age and Total Costs. Transportation Research Record: Journal of the Transportation Research Board, 2274(1), 109-113. doi:10.3141/2274-12 | es_ES |
dc.description.references | Collan, M., & Liu, S. (2003). Fuzzy logic and intelligent agents: towards the next step of capital budgeting decision support. Industrial Management & Data Systems, 103(6), 410-422. doi:10.1108/02635570310479981 | es_ES |
dc.description.references | Erol, I., & Ferrell, W. G. (2003). A methodology for selection problems with multiple, conflicting objectives and both qualitative and quantitative criteria. International Journal of Production Economics, 86(3), 187-199. doi:10.1016/s0925-5273(03)00049-5 | es_ES |
dc.description.references | Feng, W., & Figliozzi, M. (2013). An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: A case study from the USA market. Transportation Research Part C: Emerging Technologies, 26, 135-145. doi:10.1016/j.trc.2012.06.007 | es_ES |
dc.description.references | Khasnabis, S., Alsaidi, E., & Ellis, R. D. (2002). Optimal Allocation of Resources To Meet Transit Fleet Requirements. Journal of Transportation Engineering, 128(6), 509-518. doi:10.1061/(asce)0733-947x(2002)128:6(509) | es_ES |
dc.description.references | Keles, P., & Hartman, J. C. (2004). CASE STUDY: BUS FLEET REPLACEMENT. The Engineering Economist, 49(3), 253-278. doi:10.1080/00137910490498951 | es_ES |