- -

Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces

Mostrar el registro completo del ítem

Singh, S.; Gupta, DK.; Badoni, RP.; Martínez Molada, E.; Hueso Pagoaga, JL. (2017). Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces. CALCOLO. 54(2):527-539. doi:10.1007/s10092-016-0197-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/104217

Ficheros en el ítem

Metadatos del ítem

Título: Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces
Autor: Singh, Sukhjit Gupta, D. K. Badoni, Rakesh P. Martínez Molada, Eulalia Hueso Pagoaga, José Luís
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Fecha de fin de embargo: 2018-06-30
Resumen:
[EN] The local convergence analysis of a parameter based iteration with Hölder continuous first derivative is studied for finding solutions of nonlinear equations in Banach spaces. It generalizes the local convergence ...[+]
Palabras clave: Nonlinear equations , Local convergence , Banach space , Lipschitz condition , Iterative methods , Holder condition , Hammerstein integral equation
Derechos de uso: Reserva de todos los derechos
Fuente:
CALCOLO. (issn: 0008-0624 )
DOI: 10.1007/s10092-016-0197-9
Editorial:
Springer-Verlag
Versión del editor: http://dx.doi.org/10.1007/s10092-016-0197-9
Agradecimientos:
The authors thank the referees for their valuable comments which have improved the presentation of the paper. The authors thankfully acknowledge the financial assistance provided by Council of Scientific and Industrial ...[+]
Tipo: Artículo

References

Argyros, I.K., Hilout, S.: Numerical methods in nonlinear analysis. World Scientific Publ. Comp, New Jersey (2013)

Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical modelling with applications in biosciences and engineering. Nova Publishers, New York (2011)

Singh, S., Gupta, D.K., Martínez, E., Hueso, J.L.: Semilocal and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition. Appl. Math. Comput. 276, 266–277 (2016) [+]
Argyros, I.K., Hilout, S.: Numerical methods in nonlinear analysis. World Scientific Publ. Comp, New Jersey (2013)

Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical modelling with applications in biosciences and engineering. Nova Publishers, New York (2011)

Singh, S., Gupta, D.K., Martínez, E., Hueso, J.L.: Semilocal and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition. Appl. Math. Comput. 276, 266–277 (2016)

Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964)

Rall, L.B.: Computational solution of nonlinear operator equations, reprint edn. R. E. Krieger, New York (2007)

Cordero, A., Ezquerro, J.A., Hernández-Verón, M.A., Torregrosa, J.R.: On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015)

Argyros, I.K., Hilout, A.S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013)

Argyros, I.K., Behl, R., Motsa, S.S.: Local convergence of an efficient high convergence order method using hypothesis only on the first derivative. Algorithms 8, 1076–1087 (2015)

Kantorovich, L.V., Akilov, G.P.: Functional analysis. Pergamon Press, Oxford (1982)

Argyros, I.K., Magreñán, A.A.: A study on the local convergence and dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71, 1–23 (2016)

Li, D., Liu, P., Kou, J.: An improvement ofthe Chebyshev-Halley methods free from second derivative. Appl. Math. Comput. 235, 221–225 (2014)

Argyros, I.K., George, S.: Local convergence of deformed Halley method in Banach space under Holder continuity conditions. J. Nonlinear Sci. Appl. 8, 246–254 (2015)

Argyros, I.K., Khattri, S.K.: Local convergence for a family of third order methods in Banach spaces. J. Math. 46, 53–62 (2014)

Argyros, I.K., George, S., Magreñán, A.A.: Local convergence for multi-point-parametric Chebyshev-Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015)

Argyros, I.K., George, S.: Local convergence of modified Halley-like methods with less computation of inversion. Novi. Sad. J. Math. 45, 47–58 (2015)

Xiao, X.Y., Yin, H.W.: Increasing the order of convergence for iterative methods to solve nonlinear systems. Calcolo (2015). doi: 10.1007/s10092-015-0149-9

Martínez, E., Singh, S., Hueso, J.L., Gupta, D.K.: Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Appl. Math. Comput. 281, 252–265 (2016)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem