- -

Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Singh, Sukhjit es_ES
dc.contributor.author Gupta, D. K. es_ES
dc.contributor.author Badoni, Rakesh P. es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.contributor.author Hueso Pagoaga, José Luís es_ES
dc.date.accessioned 2018-06-16T04:25:34Z
dc.date.available 2018-06-16T04:25:34Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0008-0624 es_ES
dc.identifier.uri http://hdl.handle.net/10251/104217
dc.description.abstract [EN] The local convergence analysis of a parameter based iteration with Hölder continuous first derivative is studied for finding solutions of nonlinear equations in Banach spaces. It generalizes the local convergence analysis under Lipschitz continuous first derivative. The main contribution is to show the applicability to those problems for which Lipschitz condition fails without using higher order derivatives. An existence-uniqueness theorem along with the derivation of error bounds for the solution is established. Different numerical examples including nonlinear Hammerstein equation are solved. The radii of balls of convergence for them are obtained. Substantial improvements of these radii are found in comparison to some other existing methods under similar conditions for all examples considered. es_ES
dc.description.sponsorship The authors thank the referees for their valuable comments which have improved the presentation of the paper. The authors thankfully acknowledge the financial assistance provided by Council of Scientific and Industrial Research (CSIR), New Delhi, India. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof CALCOLO es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Local convergence es_ES
dc.subject Banach space es_ES
dc.subject Lipschitz condition es_ES
dc.subject Iterative methods es_ES
dc.subject Holder condition es_ES
dc.subject Hammerstein integral equation es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10092-016-0197-9 es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-06-30 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Singh, S.; Gupta, DK.; Badoni, RP.; Martínez Molada, E.; Hueso Pagoaga, JL. (2017). Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces. CALCOLO. 54(2):527-539. doi:10.1007/s10092-016-0197-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10092-016-0197-9 es_ES
dc.description.upvformatpinicio 527 es_ES
dc.description.upvformatpfin 539 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\354973 es_ES
dc.contributor.funder Council of Scientific and Industrial Research, India
dc.description.references Argyros, I.K., Hilout, S.: Numerical methods in nonlinear analysis. World Scientific Publ. Comp, New Jersey (2013) es_ES
dc.description.references Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical modelling with applications in biosciences and engineering. Nova Publishers, New York (2011) es_ES
dc.description.references Singh, S., Gupta, D.K., Martínez, E., Hueso, J.L.: Semilocal and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition. Appl. Math. Comput. 276, 266–277 (2016) es_ES
dc.description.references Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964) es_ES
dc.description.references Rall, L.B.: Computational solution of nonlinear operator equations, reprint edn. R. E. Krieger, New York (2007) es_ES
dc.description.references Cordero, A., Ezquerro, J.A., Hernández-Verón, M.A., Torregrosa, J.R.: On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015) es_ES
dc.description.references Argyros, I.K., Hilout, A.S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013) es_ES
dc.description.references Argyros, I.K., Behl, R., Motsa, S.S.: Local convergence of an efficient high convergence order method using hypothesis only on the first derivative. Algorithms 8, 1076–1087 (2015) es_ES
dc.description.references Kantorovich, L.V., Akilov, G.P.: Functional analysis. Pergamon Press, Oxford (1982) es_ES
dc.description.references Argyros, I.K., Magreñán, A.A.: A study on the local convergence and dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71, 1–23 (2016) es_ES
dc.description.references Li, D., Liu, P., Kou, J.: An improvement ofthe Chebyshev-Halley methods free from second derivative. Appl. Math. Comput. 235, 221–225 (2014) es_ES
dc.description.references Argyros, I.K., George, S.: Local convergence of deformed Halley method in Banach space under Holder continuity conditions. J. Nonlinear Sci. Appl. 8, 246–254 (2015) es_ES
dc.description.references Argyros, I.K., Khattri, S.K.: Local convergence for a family of third order methods in Banach spaces. J. Math. 46, 53–62 (2014) es_ES
dc.description.references Argyros, I.K., George, S., Magreñán, A.A.: Local convergence for multi-point-parametric Chebyshev-Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015) es_ES
dc.description.references Argyros, I.K., George, S.: Local convergence of modified Halley-like methods with less computation of inversion. Novi. Sad. J. Math. 45, 47–58 (2015) es_ES
dc.description.references Xiao, X.Y., Yin, H.W.: Increasing the order of convergence for iterative methods to solve nonlinear systems. Calcolo (2015). doi: 10.1007/s10092-015-0149-9 es_ES
dc.description.references Martínez, E., Singh, S., Hueso, J.L., Gupta, D.K.: Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Appl. Math. Comput. 281, 252–265 (2016) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem