Mostrar el registro sencillo del ítem
dc.contributor.author | Singh, Sukhjit | es_ES |
dc.contributor.author | Gupta, D. K. | es_ES |
dc.contributor.author | Badoni, Rakesh P. | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.contributor.author | Hueso Pagoaga, José Luís | es_ES |
dc.date.accessioned | 2018-06-16T04:25:34Z | |
dc.date.available | 2018-06-16T04:25:34Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0008-0624 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/104217 | |
dc.description.abstract | [EN] The local convergence analysis of a parameter based iteration with Hölder continuous first derivative is studied for finding solutions of nonlinear equations in Banach spaces. It generalizes the local convergence analysis under Lipschitz continuous first derivative. The main contribution is to show the applicability to those problems for which Lipschitz condition fails without using higher order derivatives. An existence-uniqueness theorem along with the derivation of error bounds for the solution is established. Different numerical examples including nonlinear Hammerstein equation are solved. The radii of balls of convergence for them are obtained. Substantial improvements of these radii are found in comparison to some other existing methods under similar conditions for all examples considered. | es_ES |
dc.description.sponsorship | The authors thank the referees for their valuable comments which have improved the presentation of the paper. The authors thankfully acknowledge the financial assistance provided by Council of Scientific and Industrial Research (CSIR), New Delhi, India. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | CALCOLO | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Nonlinear equations | es_ES |
dc.subject | Local convergence | es_ES |
dc.subject | Banach space | es_ES |
dc.subject | Lipschitz condition | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Holder condition | es_ES |
dc.subject | Hammerstein integral equation | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10092-016-0197-9 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-06-30 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Singh, S.; Gupta, DK.; Badoni, RP.; Martínez Molada, E.; Hueso Pagoaga, JL. (2017). Local convergence of a parameter based iteration with Holder continuous derivative in Banach spaces. CALCOLO. 54(2):527-539. doi:10.1007/s10092-016-0197-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10092-016-0197-9 | es_ES |
dc.description.upvformatpinicio | 527 | es_ES |
dc.description.upvformatpfin | 539 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 54 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\354973 | es_ES |
dc.contributor.funder | Council of Scientific and Industrial Research, India | |
dc.description.references | Argyros, I.K., Hilout, S.: Numerical methods in nonlinear analysis. World Scientific Publ. Comp, New Jersey (2013) | es_ES |
dc.description.references | Argyros, I.K., Hilout, S., Tabatabai, M.A.: Mathematical modelling with applications in biosciences and engineering. Nova Publishers, New York (2011) | es_ES |
dc.description.references | Singh, S., Gupta, D.K., Martínez, E., Hueso, J.L.: Semilocal and local convergence of a fifth order iteration with Fréchet derivative satisfying Hölder condition. Appl. Math. Comput. 276, 266–277 (2016) | es_ES |
dc.description.references | Traub, J.F.: Iterative methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964) | es_ES |
dc.description.references | Rall, L.B.: Computational solution of nonlinear operator equations, reprint edn. R. E. Krieger, New York (2007) | es_ES |
dc.description.references | Cordero, A., Ezquerro, J.A., Hernández-Verón, M.A., Torregrosa, J.R.: On the local convergence of a fifth-order iterative method in Banach spaces. Appl. Math. Comput. 251, 396–403 (2015) | es_ES |
dc.description.references | Argyros, I.K., Hilout, A.S.: On the local convergence of fast two-step Newton-like methods for solving nonlinear equations. J. Comput. Appl. Math. 245, 1–9 (2013) | es_ES |
dc.description.references | Argyros, I.K., Behl, R., Motsa, S.S.: Local convergence of an efficient high convergence order method using hypothesis only on the first derivative. Algorithms 8, 1076–1087 (2015) | es_ES |
dc.description.references | Kantorovich, L.V., Akilov, G.P.: Functional analysis. Pergamon Press, Oxford (1982) | es_ES |
dc.description.references | Argyros, I.K., Magreñán, A.A.: A study on the local convergence and dynamics of Chebyshev-Halley-type methods free from second derivative. Numer. Algorithms 71, 1–23 (2016) | es_ES |
dc.description.references | Li, D., Liu, P., Kou, J.: An improvement ofthe Chebyshev-Halley methods free from second derivative. Appl. Math. Comput. 235, 221–225 (2014) | es_ES |
dc.description.references | Argyros, I.K., George, S.: Local convergence of deformed Halley method in Banach space under Holder continuity conditions. J. Nonlinear Sci. Appl. 8, 246–254 (2015) | es_ES |
dc.description.references | Argyros, I.K., Khattri, S.K.: Local convergence for a family of third order methods in Banach spaces. J. Math. 46, 53–62 (2014) | es_ES |
dc.description.references | Argyros, I.K., George, S., Magreñán, A.A.: Local convergence for multi-point-parametric Chebyshev-Halley-type methods of higher convergence order. J. Comput. Appl. Math. 282, 215–224 (2015) | es_ES |
dc.description.references | Argyros, I.K., George, S.: Local convergence of modified Halley-like methods with less computation of inversion. Novi. Sad. J. Math. 45, 47–58 (2015) | es_ES |
dc.description.references | Xiao, X.Y., Yin, H.W.: Increasing the order of convergence for iterative methods to solve nonlinear systems. Calcolo (2015). doi: 10.1007/s10092-015-0149-9 | es_ES |
dc.description.references | Martínez, E., Singh, S., Hueso, J.L., Gupta, D.K.: Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces. Appl. Math. Comput. 281, 252–265 (2016) | es_ES |