- -

Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Capuozzo, C. es_ES
dc.contributor.author Formisano, G es_ES
dc.contributor.author Iovieno, P es_ES
dc.contributor.author Andolfo, G es_ES
dc.contributor.author Tomassoli, L es_ES
dc.contributor.author Barbella, M.M. es_ES
dc.contributor.author Picó Sirvent, María Belén es_ES
dc.contributor.author Paris, H.S. es_ES
dc.contributor.author Ercolano, M.R. es_ES
dc.date.accessioned 2018-06-18T04:25:09Z
dc.date.available 2018-06-18T04:25:09Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1380-3743 es_ES
dc.identifier.uri http://hdl.handle.net/10251/104252
dc.description.abstract [EN] Cucurbit crops are economically important worldwide. One of the most serious threats to cucurbit production is Zucchini yellow mosaic virus (ZYMV). Several resistant accessions were identified in Cucurbita moschata and their resistance was introgressed into Cucurbita pepo. However, the mode of inheritance of ZYMV resistance in C. pepo presents a great challenge to attempts at introgressing resistance into elite germplasm. The main goal of this work was to analyze the inheritance of ZYMV resistance and to identify markers associated with genes conferring resistance. An Illumina GoldenGate assay allowed us to assess polymorphism among nine squash genotypes and to discover six polymorphic single-nucleotide polymorphisms (SNPs) between two near-isogenic lines, "True French" (susceptible to ZYMV) and Accession 381e (resistant to ZYMV). Two F-2 and three BC1 populations obtained from crossing the ZYMV-resistant Accession 381e with two susceptible ones, the zucchini True French and the cocozelle "San Pasquale," were assayed for ZYMV resistance. Molecular analysis revealed an approximately 90% association between SNP1 and resistance, which was confirmed using High Resolution Melt (HRM) and a CAPS marker. Co-segregation up to 72% in populations segregating for resistance was observed for two other SNP markers that could be potentially linked to genes involved in resistance expression. A functional prediction of proteins involved in the resistance response was performed on genome scaffolds containing the three SNPs of interest. Indeed, 16 full-length pathogen recognition genes (PRGs) were identified around the three SNP markers. In particular, we discovered that two nucleotide-binding site leucine-rich repeat (NBS-LRR) protein-encoding genes were located near the SNP1 marker. The investigation of ZYMV resistance in squash populations and the genomic analysis performed in this work could be useful for better directing the introgression of disease resistance into elite C. pepo germplasm. es_ES
dc.description.sponsorship This work was supported by the Ministry of University and Research (GenHORT project). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Molecular Breeding es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cucurbita pepo es_ES
dc.subject Pathogen recognition genes es_ES
dc.subject SNP markers es_ES
dc.subject Squash es_ES
dc.subject ZYMV resistance es_ES
dc.subject.classification GENETICA es_ES
dc.title Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11032-017-0698-5 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00020-C04-03/ES/Identificación de resistencias a ToLCNDV en Cucurbitáceas y análisis genético de las mismas/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-08-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Capuozzo, C.; Formisano, G.; Iovieno, P.; Andolfo, G.; Tomassoli, L.; Barbella, M.; Picó Sirvent, MB.... (2017). Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo. Molecular Breeding. 37(8). https://doi.org/10.1007/s11032-017-0698-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11032-017-0698-5 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 37 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\346334 es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.description.references Addinsoft (2007) XLSTAT, Analyse de données et statistique avec MS Excel. Addinsoft, NY es_ES
dc.description.references Andolfo G, Ercolano MR (2015) Plant innate immunity multicomponent model. Front Plant Sci 6:987 es_ES
dc.description.references Andolfo G, Sanseverino W, Rombauts S et al (2013) Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197:223–237 es_ES
dc.description.references Andolfo G, Ferriello F, Tardella L et al (2014) Tomato genome-wide transcriptional responses to fusarium wilt, and tomato mosaic virus. PLoS One 9:e94963 es_ES
dc.description.references Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics 12:104 es_ES
dc.description.references Brown RN, Bolanos-Herrera A, Myers JR, Jahn MM (2003) Inheritance of resistance to four cucurbit viruses in Cucurbita moschata. Euphytica 129:253–258 es_ES
dc.description.references Burge CB, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8:346–354 es_ES
dc.description.references Cipollini D (2008) Constitutive expression of methyl jasmonate-inducible responses delays reproduction and constrains fitness responses to nutrients in Arabidopsis thaliana. Evol Ecol 24:59–68 es_ES
dc.description.references Cohen R, Hanan A, Paris HS (2003) Single-gene resistance to powdery mildew in zucchini squash (Cucurbita pepo). Euphytica 130:433–441 es_ES
dc.description.references Collum TD, Padmanabhan MS, Hsieh YC, Culver JN (2016) Tobacco mosaic virus-directed reprogramming of auxin/indole acetic acid protein transcriptional responses enhances virus phloem loading. Proc Natl Acad Sci U S A 113:E2740–E2749 es_ES
dc.description.references Desbiez C, Lecoq H (1997) Zucchini yellow mosaic virus. Plant Pathol 46:809–829 es_ES
dc.description.references Ercolano MR, Sanseverino W, Carli P, Ferriello F, Frusciante L (2012) Genetic and genomic approaches for R-gene mediated disease resistance in tomato: retrospects and prospects. Plant Cell Rep 31:973–985 es_ES
dc.description.references Esteras C, Gómez P, Monforte AJ, Blanca J, Vicente-Dólera N, Roig C, Nuez F, Picó B (2012) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics 13:80 es_ES
dc.description.references Formisano G, Paris HS, Frusciante L, Ercolano MR (2010) Commercial Cucurbita pepo squash hybrids carrying disease resistance introgressed from Cucurbita moschata have high genetic similarity. Plant Genet Resour 8:198–203 es_ES
dc.description.references Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Report 13:207–209 es_ES
dc.description.references Gal-On A (2007) Zucchini yellow mosaic virus: insect transmission and pathogenicity—the tails of two proteins. Mol Plant Pathol 8:139–150 es_ES
dc.description.references Gilbert-Albertini F, Lecoq H, Pitrat M, Nicolet JL (1993) Resistance of Cucurbita moschata to watermelon mosaic virus type 2 and its genetic relation to resistance to zucchini yellow mosaic virus. Euphytica 69:231–237 es_ES
dc.description.references Gómez P, Rodríguez-Hernández AM, Moury B, Aranda MA (2009) Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur J Plant Pathol 125:1–22 es_ES
dc.description.references Gong L, Stift G, Kofler R, Pachner M, Lelley T (2008a) Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet 117:37–48 es_ES
dc.description.references Gong L, Pachner M, Kalai K, Lelley T (2008b) SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome 51:878–887 es_ES
dc.description.references Iovieno P, Andolfo G, Schiavulli A, Catalano D, Ricciardi L, Frusciante L et al. (2015) Structure, evolution and functional inference on the MildewLocusO (MLO) gene family in three cultivated Cucurbitaceae. BMC Genomics 16:1112. doi: 10.1186/s12864-015-2325-3 es_ES
dc.description.references Ishibashi K, Kezuka Y, Kobayashi C, Kato M, Inoue T, Nonaka T et al (2014) Structural basis for the recognition–evasion arms race between Tomato mosaic virus and the resistance gene Tm-1. PNAS 111:E3486–E3495 es_ES
dc.description.references Lecoq H, Pitrat M, Clément M (1981) Identification et caractérisation d’un potyvirus provoquant la maladie du rabougrissement jaune du melon. Agronomie 1:827–834 es_ES
dc.description.references Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper—Phytophthora capsici Leonian. Theor Appl Genet 93:503–511 es_ES
dc.description.references Levi A, Thomas CE, Newman M, Zhan X, Xu Y, Wehner TC (2003) Massive preferential segregation and nonrandom assortment of linkage-groups produce quasi-linkage in an F2 mapping population of watermelon. Hortscience 38:782 es_ES
dc.description.references Lisa V, Lecoq H (1984) Zucchini yellow mosaic virus. Descriptions of Plant Viruses, Commonwealth Mycological Institute and Association of Applied Biologists 282 es_ES
dc.description.references Lisa V, Boccardo G, D'Agostino G, Dellavalle G, d’Aquilio M (1981) Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology 71:667–672 es_ES
dc.description.references MacQueen A, Bergelson J (2016) Modulation of R-gene expression across environments. J Exp Bot 67:2093–2105 es_ES
dc.description.references Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220 es_ES
dc.description.references Munger HM, Provvidenti R (1987) Inheritance of resistance to zucchini yellow mosaic virus in Cucurbita moschata. Cucurbit Genet Coop Rep 10:8–81 es_ES
dc.description.references Nameth ST, Dodds JA, Paulus AO, Laemmlen FF (1986) Cucurbit viruses of California: an ever-changing problem. Plant Dis 70:8–12 es_ES
dc.description.references Ott J, Wang J, Leal SM (2015) Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet 16(5):275–284 es_ES
dc.description.references Pachner M, Lelley T (2004) Different genes for resistance to zucchini yellow mosaic virus (ZYMV) in Cucurbita moschata. In: Lebeda A, Paris HS (eds) Progress in cucurbit genetics and breeding research: Proceedings of Cucurbitaceae 2004. Palacky University, Olomouc (Czech Republic), pp 237–243 es_ES
dc.description.references Pachner M, Paris HS, Lelley T (2011) Genes for resistance to zucchini yellow mosaic in tropical pumpkin. J Hered 102:330–335 es_ES
dc.description.references Pachner M, Paris HS, Winkler J, Lelley T (2015) Phenotypic and marker-assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin (Cucurbita pepo). Plant Breed 134:121–128 es_ES
dc.description.references Paris HS (1986) A proposed subspecific classification for Cucurbita pepo. Phytologia 61:133–138 es_ES
dc.description.references Paris HS (2001) Characterization of the Cucurbita pepo collection at the Newe Ya‘ar Research Center, Israel. Plant Genet Resour Newsl 126:41–45 es_ES
dc.description.references Paris HS (2008) Summer squash. In: Prohens J, Nuez F (eds) Handbook of plant breeding, Vegetables I: 351–379 es_ES
dc.description.references Paris HS, Cohen S (2000) Oligogenic inheritance for resistance to zucchini yellow mosaic virus in Cucurbita pepo. Ann Appl Biol 136:209–214 es_ES
dc.description.references Paris HS, Cohen S, Burger Y, Joseph R (1988) Single-gene resistance to zucchini yellow mosaic virus in Cucurbita moschata. Euphytica 37:27–29 es_ES
dc.description.references Peakall PE, Smouse R (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539 es_ES
dc.description.references Sakamoto T, Deguchi M, Brustolini OJ, Santos AA, Silva FF, Fontes EP (2012) The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol 12:229 es_ES
dc.description.references Sanseverino W, Ercolano MR (2012) In silico approach to predict candidate R proteins and to define their domain architecture. BMC Res Notes 5:678 es_ES
dc.description.references Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 es_ES
dc.description.references Teare MD, Santibanez Koref MF (2014) Linkage analysis and the study of Mendelian disease in the era of whole exome and genome sequencing. Brief Funct Genomics 13(5):378–383 es_ES
dc.description.references Valkonen JPT, Wiegmann K, Hämäläinen JH, Marczewski W, Watanabe KN (2008) Evidence for utility of the same PCR-based markers for selection of extreme resistance to Potato virus Y controlled by Rysto of Solanum stoloniferum derived from different sources. Ann Appl Biol 152:121–130 es_ES
dc.description.references Wessel-Beaver L (2005) Cultivar and germplasm release. Release of ‘Soler’ tropical pumpkin. J Agric Univ P R 89:263–266 es_ES
dc.description.references Whitaker TW, Davis GN (1962) Cucurbits: botany, cultivation and utilization. Interscience, New York, pp 105–116 es_ES
dc.description.references Whitaker TW, Robinson RW (1986) Squash breeding. In: Bassett MJ (ed) Breeding vegetable crops. Avi, Westport, pp 209–242 es_ES
dc.description.references Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407 es_ES
dc.description.references Xu R, Zhang S, Huang J, Zheng C (2013) Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa. PLoS One 8:e78982 es_ES
dc.description.references Ye G, Smith KF (2008) Marker-assisted gene pyramiding for inbred line development: basic principles and practical guidelines. Int J Plant Breed 2:1–10 es_ES
dc.description.references Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848 es_ES
dc.description.references Zraidi A, Stift G, Pachner M, Shojaeiyan A, Gong L, Lelley T (2007) A consensus map for Cucurbita pepo. Mol Breed 20:375–388 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem