- -

Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo

Mostrar el registro completo del ítem

Capuozzo, C.; Formisano, G.; Iovieno, P.; Andolfo, G.; Tomassoli, L.; Barbella, M.; Picó Sirvent, MB.... (2017). Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo. Molecular Breeding. 37(8). https://doi.org/10.1007/s11032-017-0698-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/104252

Ficheros en el ítem

Metadatos del ítem

Título: Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo
Autor: Capuozzo, C. Formisano, G Iovieno, P Andolfo, G Tomassoli, L Barbella, M.M. Picó Sirvent, María Belén Paris, H.S. Ercolano, M.R.
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Fecha de fin de embargo: 2018-08-01
Resumen:
[EN] Cucurbit crops are economically important worldwide. One of the most serious threats to cucurbit production is Zucchini yellow mosaic virus (ZYMV). Several resistant accessions were identified in Cucurbita moschata ...[+]
Palabras clave: Cucurbita pepo , Pathogen recognition genes , SNP markers , Squash , ZYMV resistance
Derechos de uso: Reserva de todos los derechos
Fuente:
Molecular Breeding. (issn: 1380-3743 )
DOI: 10.1007/s11032-017-0698-5
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s11032-017-0698-5
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTA2013-00020-C04-03/ES/Identificación de resistencias a ToLCNDV en Cucurbitáceas y análisis genético de las mismas/
Agradecimientos:
This work was supported by the Ministry of University and Research (GenHORT project).
Tipo: Artículo

References

Addinsoft (2007) XLSTAT, Analyse de données et statistique avec MS Excel. Addinsoft, NY

Andolfo G, Ercolano MR (2015) Plant innate immunity multicomponent model. Front Plant Sci 6:987

Andolfo G, Sanseverino W, Rombauts S et al (2013) Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197:223–237 [+]
Addinsoft (2007) XLSTAT, Analyse de données et statistique avec MS Excel. Addinsoft, NY

Andolfo G, Ercolano MR (2015) Plant innate immunity multicomponent model. Front Plant Sci 6:987

Andolfo G, Sanseverino W, Rombauts S et al (2013) Overview of tomato (Solanum lycopersicum) candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197:223–237

Andolfo G, Ferriello F, Tardella L et al (2014) Tomato genome-wide transcriptional responses to fusarium wilt, and tomato mosaic virus. PLoS One 9:e94963

Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics 12:104

Brown RN, Bolanos-Herrera A, Myers JR, Jahn MM (2003) Inheritance of resistance to four cucurbit viruses in Cucurbita moschata. Euphytica 129:253–258

Burge CB, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8:346–354

Cipollini D (2008) Constitutive expression of methyl jasmonate-inducible responses delays reproduction and constrains fitness responses to nutrients in Arabidopsis thaliana. Evol Ecol 24:59–68

Cohen R, Hanan A, Paris HS (2003) Single-gene resistance to powdery mildew in zucchini squash (Cucurbita pepo). Euphytica 130:433–441

Collum TD, Padmanabhan MS, Hsieh YC, Culver JN (2016) Tobacco mosaic virus-directed reprogramming of auxin/indole acetic acid protein transcriptional responses enhances virus phloem loading. Proc Natl Acad Sci U S A 113:E2740–E2749

Desbiez C, Lecoq H (1997) Zucchini yellow mosaic virus. Plant Pathol 46:809–829

Ercolano MR, Sanseverino W, Carli P, Ferriello F, Frusciante L (2012) Genetic and genomic approaches for R-gene mediated disease resistance in tomato: retrospects and prospects. Plant Cell Rep 31:973–985

Esteras C, Gómez P, Monforte AJ, Blanca J, Vicente-Dólera N, Roig C, Nuez F, Picó B (2012) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics 13:80

Formisano G, Paris HS, Frusciante L, Ercolano MR (2010) Commercial Cucurbita pepo squash hybrids carrying disease resistance introgressed from Cucurbita moschata have high genetic similarity. Plant Genet Resour 8:198–203

Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Report 13:207–209

Gal-On A (2007) Zucchini yellow mosaic virus: insect transmission and pathogenicity—the tails of two proteins. Mol Plant Pathol 8:139–150

Gilbert-Albertini F, Lecoq H, Pitrat M, Nicolet JL (1993) Resistance of Cucurbita moschata to watermelon mosaic virus type 2 and its genetic relation to resistance to zucchini yellow mosaic virus. Euphytica 69:231–237

Gómez P, Rodríguez-Hernández AM, Moury B, Aranda MA (2009) Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur J Plant Pathol 125:1–22

Gong L, Stift G, Kofler R, Pachner M, Lelley T (2008a) Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet 117:37–48

Gong L, Pachner M, Kalai K, Lelley T (2008b) SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome 51:878–887

Iovieno P, Andolfo G, Schiavulli A, Catalano D, Ricciardi L, Frusciante L et al. (2015) Structure, evolution and functional inference on the MildewLocusO (MLO) gene family in three cultivated Cucurbitaceae. BMC Genomics 16:1112. doi: 10.1186/s12864-015-2325-3

Ishibashi K, Kezuka Y, Kobayashi C, Kato M, Inoue T, Nonaka T et al (2014) Structural basis for the recognition–evasion arms race between Tomato mosaic virus and the resistance gene Tm-1. PNAS 111:E3486–E3495

Lecoq H, Pitrat M, Clément M (1981) Identification et caractérisation d’un potyvirus provoquant la maladie du rabougrissement jaune du melon. Agronomie 1:827–834

Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper—Phytophthora capsici Leonian. Theor Appl Genet 93:503–511

Levi A, Thomas CE, Newman M, Zhan X, Xu Y, Wehner TC (2003) Massive preferential segregation and nonrandom assortment of linkage-groups produce quasi-linkage in an F2 mapping population of watermelon. Hortscience 38:782

Lisa V, Lecoq H (1984) Zucchini yellow mosaic virus. Descriptions of Plant Viruses, Commonwealth Mycological Institute and Association of Applied Biologists 282

Lisa V, Boccardo G, D'Agostino G, Dellavalle G, d’Aquilio M (1981) Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology 71:667–672

MacQueen A, Bergelson J (2016) Modulation of R-gene expression across environments. J Exp Bot 67:2093–2105

Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

Munger HM, Provvidenti R (1987) Inheritance of resistance to zucchini yellow mosaic virus in Cucurbita moschata. Cucurbit Genet Coop Rep 10:8–81

Nameth ST, Dodds JA, Paulus AO, Laemmlen FF (1986) Cucurbit viruses of California: an ever-changing problem. Plant Dis 70:8–12

Ott J, Wang J, Leal SM (2015) Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet 16(5):275–284

Pachner M, Lelley T (2004) Different genes for resistance to zucchini yellow mosaic virus (ZYMV) in Cucurbita moschata. In: Lebeda A, Paris HS (eds) Progress in cucurbit genetics and breeding research: Proceedings of Cucurbitaceae 2004. Palacky University, Olomouc (Czech Republic), pp 237–243

Pachner M, Paris HS, Lelley T (2011) Genes for resistance to zucchini yellow mosaic in tropical pumpkin. J Hered 102:330–335

Pachner M, Paris HS, Winkler J, Lelley T (2015) Phenotypic and marker-assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oilseed pumpkin (Cucurbita pepo). Plant Breed 134:121–128

Paris HS (1986) A proposed subspecific classification for Cucurbita pepo. Phytologia 61:133–138

Paris HS (2001) Characterization of the Cucurbita pepo collection at the Newe Ya‘ar Research Center, Israel. Plant Genet Resour Newsl 126:41–45

Paris HS (2008) Summer squash. In: Prohens J, Nuez F (eds) Handbook of plant breeding, Vegetables I: 351–379

Paris HS, Cohen S (2000) Oligogenic inheritance for resistance to zucchini yellow mosaic virus in Cucurbita pepo. Ann Appl Biol 136:209–214

Paris HS, Cohen S, Burger Y, Joseph R (1988) Single-gene resistance to zucchini yellow mosaic virus in Cucurbita moschata. Euphytica 37:27–29

Peakall PE, Smouse R (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

Sakamoto T, Deguchi M, Brustolini OJ, Santos AA, Silva FF, Fontes EP (2012) The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC Plant Biol 12:229

Sanseverino W, Ercolano MR (2012) In silico approach to predict candidate R proteins and to define their domain architecture. BMC Res Notes 5:678

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

Teare MD, Santibanez Koref MF (2014) Linkage analysis and the study of Mendelian disease in the era of whole exome and genome sequencing. Brief Funct Genomics 13(5):378–383

Valkonen JPT, Wiegmann K, Hämäläinen JH, Marczewski W, Watanabe KN (2008) Evidence for utility of the same PCR-based markers for selection of extreme resistance to Potato virus Y controlled by Rysto of Solanum stoloniferum derived from different sources. Ann Appl Biol 152:121–130

Wessel-Beaver L (2005) Cultivar and germplasm release. Release of ‘Soler’ tropical pumpkin. J Agric Univ P R 89:263–266

Whitaker TW, Davis GN (1962) Cucurbits: botany, cultivation and utilization. Interscience, New York, pp 105–116

Whitaker TW, Robinson RW (1986) Squash breeding. In: Bassett MJ (ed) Breeding vegetable crops. Avi, Westport, pp 209–242

Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

Xu R, Zhang S, Huang J, Zheng C (2013) Genome-wide comparative in silico analysis of the RNA helicase gene family in Zea mays and Glycine max: a comparison with Arabidopsis and Oryza sativa. PLoS One 8:e78982

Ye G, Smith KF (2008) Marker-assisted gene pyramiding for inbred line development: basic principles and practical guidelines. Int J Plant Breed 2:1–10

Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

Zraidi A, Stift G, Pachner M, Shojaeiyan A, Gong L, Lelley T (2007) A consensus map for Cucurbita pepo. Mol Breed 20:375–388

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem