- -

Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study

Show full item record

García-Ballesteros, S.; Constante, M.; Vicente Candela, R.; Mora Carbonell, M.; Amat Payá, AM.; Arques Sanz, A.; Carlos, L.... (2017). Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study. Photochemical & Photobiological Sciences. 16:38-45. https://doi.org/10.1039/c6pp00236f

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/104446

Files in this item

Item Metadata

Title: Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study
Author: García-Ballesteros, Sara Constante, M. Vicente Candela, Rafael Mora Carbonell, Margarita Amat Payá, Ana María Arques Sanz, Antonio Carlos, L. García Einschlag, F.S.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] In this work, analysis of excitation-emission-matrices (EEM) has been employed to gain further insight into the characterization of humic like substances (HLS) obtained from urban wastes (soluble bio-organic substances, ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Photochemical & Photobiological Sciences. (issn: 1474-905X )
DOI: 10.1039/c6pp00236f
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c6pp00236f
Project ID:
info:eu-repo/grantAgreement/GVA//GV%2F2015%2F074/
info:eu-repo/grantAgreement/EC/H2020/645551/EU/Enhancing water quality by developing novel materials for organic pollutant removal in tertiary water treatments/
info:eu-repo/grantAgreement/MINECO//CTQ2015-69832-C4-4-R/ES/TECNOLOGIAS EFICIENTES PARA LA ELIMINACION DE CONTAMINANTES DE PREOCUPACION EMERGENTE, CONTENIDOS EN DIRECTIVA 2013%2F39%2FCE O DE RIESGO SIGNIFICATIVO SEGUN DIRECTIVA 2008%2F105%2FCE/
Thanks:
This work was supported by Generalitat Valenciana, Conselleria d'Ecuacio, Cultura i esport, Spain (GV/2015/074), Spanish Ministerio de Economia y Competitividad (CTQ2015-69832-C4-4-R) and by the Marie Sklodowska-Curie ...[+]
Type: Artículo

References

Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. doi:10.1016/j.cattod.2009.06.018

WANG, J. L., & XU, L. J. (2012). Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Critical Reviews in Environmental Science and Technology, 42(3), 251-325. doi:10.1080/10643389.2010.507698

Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. doi:10.1080/10643380500326564 [+]
Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. doi:10.1016/j.cattod.2009.06.018

WANG, J. L., & XU, L. J. (2012). Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Critical Reviews in Environmental Science and Technology, 42(3), 251-325. doi:10.1080/10643389.2010.507698

Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. doi:10.1080/10643380500326564

Papoutsakis, S., Miralles-Cuevas, S., Oller, I., Garcia Sanchez, J. L., Pulgarin, C., & Malato, S. (2015). Microcontaminant degradation in municipal wastewater treatment plant secondary effluent by EDDS assisted photo-Fenton at near-neutral pH: An experimental design approach. Catalysis Today, 252, 61-69. doi:10.1016/j.cattod.2015.02.005

Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A. (2013). Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47(2), 833-840. doi:10.1016/j.watres.2012.11.008

De Luca, A., Dantas, R. F., & Esplugas, S. (2015). Study of Fe(III)-NTA chelates stability for applicability in photo-Fenton at neutral pH. Applied Catalysis B: Environmental, 179, 372-379. doi:10.1016/j.apcatb.2015.05.025

Bernabeu, A., Palacios, S., Vicente, R., Vercher, R. F., Malato, S., Arques, A., & Amat, A. M. (2012). Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants. Chemical Engineering Journal, 198-199, 65-72. doi:10.1016/j.cej.2012.05.056

Klamerth, N., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. (2011). Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catalysis Today, 161(1), 241-246. doi:10.1016/j.cattod.2010.10.074

Voelker, B. M., Morel, F. M. M., & Sulzberger, B. (1997). Iron Redox Cycling in Surface Waters:  Effects of Humic Substances and Light. Environmental Science & Technology, 31(4), 1004-1011. doi:10.1021/es9604018

De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46(6), 1947-1957. doi:10.1016/j.watres.2012.01.014

Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., … Carlos, L. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176-180. doi:10.1016/j.cattod.2012.08.036

Gomis, J., Carlos, L., Prevot, A. B., Teixeira, A. C. S. C., Mora, M., Amat, A. M., … Arques, A. (2015). Bio-based substances from urban waste as auxiliaries for solar photo-Fenton treatment under mild conditions: Optimization of operational variables. Catalysis Today, 240, 39-45. doi:10.1016/j.cattod.2014.03.034

Gomis, J., Bianco Prevot, A., Montoneri, E., González, M. C., Amat, A. M., Mártire, D. O., … Carlos, L. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236-243. doi:10.1016/j.cej.2013.09.009

Avetta, P., Berto, S., Bianco Prevot, A., Minella, M., Montoneri, E., Persico, D., … Arques, A. (2015). Photoinduced transformation of waste-derived soluble bio-based substances. Chemical Engineering Journal, 274, 247-255. doi:10.1016/j.cej.2015.03.126

Gomis, J., Gonçalves, M. G., Vercher, R. F., Sabater, C., Castillo, M.-A., Prevot, A. B., … Arques, A. (2015). Determination of photostability, biocompatibility and efficiency as photo-Fenton auxiliaries of three different types of soluble bio-based substances (SBO). Catalysis Today, 252, 177-183. doi:10.1016/j.cattod.2014.10.015

Berkovic, A. M., García Einschlag, F. S., Gonzalez, M. C., Pis Diez, R., & Mártire, D. O. (2013). Evaluation of the Hg2+binding potential of fulvic acids from fluorescence excitation–emission matrices. Photochem. Photobiol. Sci., 12(2), 384-392. doi:10.1039/c2pp25280e

Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6(11), 572-579. doi:10.4319/lom.2008.6.572

Ishii, S. K. L., & Boyer, T. H. (2012). Behavior of Reoccurring PARAFAC Components in Fluorescent Dissolved Organic Matter in Natural and Engineered Systems: A Critical Review. Environmental Science & Technology, 46(4), 2006-2017. doi:10.1021/es2043504

Su, Y., Chen, F., & Liu, Z. (2015). Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree line: insights into sources of CDOM. Photochemical & Photobiological Sciences, 14(5), 1047-1062. doi:10.1039/c4pp00478g

Yang, X., Meng, F., Huang, G., Sun, L., & Lin, Z. (2014). Sunlight-induced changes in chromophores and fluorophores of wastewater-derived organic matter in receiving waters – The role of salinity. Water Research, 62, 281-292. doi:10.1016/j.watres.2014.05.050

Wu, J., Zhang, H., He, P.-J., & Shao, L.-M. (2011). Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis. Water Research, 45(4), 1711-1719. doi:10.1016/j.watres.2010.11.022

Yamashita, Y., & Jaffé, R. (2008). Characterizing the Interactions between Trace Metals and Dissolved Organic Matter Using Excitation−Emission Matrix and Parallel Factor Analysis. Environmental Science & Technology, 42(19), 7374-7379. doi:10.1021/es801357h

Nisticò, R., Barrasso, M., Carrillo Le Roux, G. A., Seckler, M. M., Sousa, W., Malandrino, M., & Magnacca, G. (2015). Biopolymers from Composted Biowaste as Stabilizers for the Synthesis of Spherical and Homogeneously Sized Silver Nanoparticles for Textile Applications on Natural Fibers. ChemPhysChem, 16(18), 3902-3909. doi:10.1002/cphc.201500721

Ohno, T. (2002). Fluorescence Inner-Filtering Correction for Determining the Humification Index of Dissolved Organic Matter. Environmental Science & Technology, 36(4), 742-746. doi:10.1021/es0155276

Bahram, M., Bro, R., Stedmon, C., & Afkhami, A. (2006). Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics, 20(3-4), 99-105. doi:10.1002/cem.978

Ryan, D. K., & Weber, J. H. (1982). Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid. Analytical Chemistry, 54(6), 986-990. doi:10.1021/ac00243a033

Yan, M., Fu, Q., Li, D., Gao, G., & Wang, D. (2013). Study of the pH influence on the optical properties of dissolved organic matter using fluorescence excitation–emission matrix and parallel factor analysis. Journal of Luminescence, 142, 103-109. doi:10.1016/j.jlumin.2013.02.052

Dryer, D. J., Korshin, G. V., & Fabbricino, M. (2008). In Situ Examination of the Protonation Behavior of Fulvic Acids Using Differential Absorbance Spectroscopy. Environmental Science & Technology, 42(17), 6644-6649. doi:10.1021/es800741u

Ghosh, K., & Schnitzer, M. (1981). Fluorescence Excitation Spectra and Viscosity Behavior of a Fulvic Acid and its Copper and Iron Complexes1. Soil Science Society of America Journal, 45(1), 25. doi:10.2136/sssaj1981.03615995004500010005x

Lyon, B. A., Cory, R. M., & Weinberg, H. S. (2014). Changes in dissolved organic matter fluorescence and disinfection byproduct formation from UV and subsequent chlorination/chloramination. Journal of Hazardous Materials, 264, 411-419. doi:10.1016/j.jhazmat.2013.10.065

Poulin, B. A., Ryan, J. N., & Aiken, G. R. (2014). Effects of Iron on Optical Properties of Dissolved Organic Matter. Environmental Science & Technology, 48(17), 10098-10106. doi:10.1021/es502670r

Xu, H., Yan, Z., Cai, H., Yu, G., Yang, L., & Jiang, H. (2013). Heterogeneity in metal binding by individual fluorescent components in a eutrophic algae-rich lake. Ecotoxicology and Environmental Safety, 98, 266-272. doi:10.1016/j.ecoenv.2013.09.008

Esteves da Silva, J. (1998). Fluorescence quenching of anthropogenic fulvic acids by Cu(II), Fe(III) and UO22+. Talanta, 45(6), 1155-1165. doi:10.1016/s0039-9140(97)00224-5

Zhao, J., & Nelson, D. J. (2005). Fluorescence study of the interaction of Suwannee River fulvic acid with metal ions and Al3+-metal ion competition. Journal of Inorganic Biochemistry, 99(2), 383-396. doi:10.1016/j.jinorgbio.2004.10.005

Mikutta, C., & Kretzschmar, R. (2011). Spectroscopic Evidence for Ternary Complex Formation between Arsenate and Ferric Iron Complexes of Humic Substances. Environmental Science & Technology, 45(22), 9550-9557. doi:10.1021/es202300w

Orsetti, S., Laskov, C., & Haderlein, S. B. (2013). Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation. Environmental Science & Technology, 47(24), 14161-14168. doi:10.1021/es403658g

Lopes, L., de Laat, J., & Legube, B. (2002). Charge Transfer of Iron(III) Monomeric and Oligomeric Aqua Hydroxo Complexes:  Semiempirical Investigation into Photoactivity. Inorganic Chemistry, 41(9), 2505-2517. doi:10.1021/ic011029m

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record