- -

Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Ballesteros, Sara es_ES
dc.contributor.author Constante, M. es_ES
dc.contributor.author Vicente Candela, Rafael es_ES
dc.contributor.author Mora Carbonell, Margarita es_ES
dc.contributor.author Amat Payá, Ana María es_ES
dc.contributor.author Arques Sanz, Antonio es_ES
dc.contributor.author Carlos, L. es_ES
dc.contributor.author García Einschlag, F.S. es_ES
dc.date.accessioned 2018-06-21T04:22:27Z
dc.date.available 2018-06-21T04:22:27Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1474-905X es_ES
dc.identifier.uri http://hdl.handle.net/10251/104446
dc.description.abstract [EN] In this work, analysis of excitation-emission-matrices (EEM) has been employed to gain further insight into the characterization of humic like substances (HLS) obtained from urban wastes (soluble bio-organic substances, SBOs). In particular, complexation of these substances with iron and changes along a photo-Fenton process have been studied. Recorded EEMs were decomposed by using parallel factor analysis (PARAFAC). Three fluorescent components were identified by PARAFAC modeling of the entire set of SBO solutions studied. The EEM peak locations (lambda(ex)/lambda(em)) of these components were 310-330 nm/400-420 nm (C1), 340-360 nm/450-500 nm (C2), and 285 nm/335-380 nm (C3). Slight variations of the maximum position of each component with the solution pH were observed. The interaction of SBO with Fe(III) was characterized by determining the stability constants of the components with Fe(III) at different pH values, which were in the order of magnitude of the ones reported for humic substances and reached their highest values at pH = 5. Photochemical experiments employing SBO and Fe(III), with and without H2O2, showed pH-dependent trends for the evolution of the modeled components, which exhibited a strong correlation with the efficiency reported for the photo-Fenton processes in the presence of SBO at different pH values. es_ES
dc.description.sponsorship This work was supported by Generalitat Valenciana, Conselleria d'Ecuacio, Cultura i esport, Spain (GV/2015/074), Spanish Ministerio de Economia y Competitividad (CTQ2015-69832-C4-4-R) and by the Marie Sklodowska-Curie Research and Innovation Staff Exchange project funded by the European Commission H2020-MSCA-RISE-2014 (Project number: 645551). F. S. G. E. and L. C. are researchers from CONICET, Argentina. en_EN
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Photochemical & Photobiological Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification QUIMICA FISICA es_ES
dc.title Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c6pp00236f es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2015%2F074/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/645551/EU/Enhancing water quality by developing novel materials for organic pollutant removal in tertiary water treatments/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-69832-C4-4-R/ES/TECNOLOGIAS EFICIENTES PARA LA ELIMINACION DE CONTAMINANTES DE PREOCUPACION EMERGENTE, CONTENIDOS EN DIRECTIVA 2013%2F39%2FCE O DE RIESGO SIGNIFICATIVO SEGUN DIRECTIVA 2008%2F105%2FCE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Textil y Papelera - Departament d'Enginyeria Tèxtil i Paperera es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation García-Ballesteros, S.; Constante, M.; Vicente Candela, R.; Mora Carbonell, M.; Amat Payá, AM.; Arques Sanz, A.; Carlos, L.... (2017). Humic-like substances from urban waste as auxiliaries for photo-Fenton treatment: a fluorescence EEM-PARAFAC study. Photochemical & Photobiological Sciences. 16:38-45. https://doi.org/10.1039/c6pp00236f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c6pp00236f es_ES
dc.description.upvformatpinicio 38 es_ES
dc.description.upvformatpfin 45 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.relation.pasarela S\326920 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., & Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1-59. doi:10.1016/j.cattod.2009.06.018 es_ES
dc.description.references WANG, J. L., & XU, L. J. (2012). Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Critical Reviews in Environmental Science and Technology, 42(3), 251-325. doi:10.1080/10643389.2010.507698 es_ES
dc.description.references Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1-84. doi:10.1080/10643380500326564 es_ES
dc.description.references Papoutsakis, S., Miralles-Cuevas, S., Oller, I., Garcia Sanchez, J. L., Pulgarin, C., & Malato, S. (2015). Microcontaminant degradation in municipal wastewater treatment plant secondary effluent by EDDS assisted photo-Fenton at near-neutral pH: An experimental design approach. Catalysis Today, 252, 61-69. doi:10.1016/j.cattod.2015.02.005 es_ES
dc.description.references Klamerth, N., Malato, S., Agüera, A., & Fernández-Alba, A. (2013). Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 47(2), 833-840. doi:10.1016/j.watres.2012.11.008 es_ES
dc.description.references De Luca, A., Dantas, R. F., & Esplugas, S. (2015). Study of Fe(III)-NTA chelates stability for applicability in photo-Fenton at neutral pH. Applied Catalysis B: Environmental, 179, 372-379. doi:10.1016/j.apcatb.2015.05.025 es_ES
dc.description.references Bernabeu, A., Palacios, S., Vicente, R., Vercher, R. F., Malato, S., Arques, A., & Amat, A. M. (2012). Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants. Chemical Engineering Journal, 198-199, 65-72. doi:10.1016/j.cej.2012.05.056 es_ES
dc.description.references Klamerth, N., Malato, S., Maldonado, M. I., Agüera, A., & Fernández-Alba, A. (2011). Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catalysis Today, 161(1), 241-246. doi:10.1016/j.cattod.2010.10.074 es_ES
dc.description.references Voelker, B. M., Morel, F. M. M., & Sulzberger, B. (1997). Iron Redox Cycling in Surface Waters:  Effects of Humic Substances and Light. Environmental Science & Technology, 31(4), 1004-1011. doi:10.1021/es9604018 es_ES
dc.description.references De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46(6), 1947-1957. doi:10.1016/j.watres.2012.01.014 es_ES
dc.description.references Gomis, J., Vercher, R. F., Amat, A. M., Mártire, D. O., González, M. C., Bianco Prevot, A., … Carlos, L. (2013). Application of soluble bio-organic substances (SBO) as photocatalysts for wastewater treatment: Sensitizing effect and photo-Fenton-like process. Catalysis Today, 209, 176-180. doi:10.1016/j.cattod.2012.08.036 es_ES
dc.description.references Gomis, J., Carlos, L., Prevot, A. B., Teixeira, A. C. S. C., Mora, M., Amat, A. M., … Arques, A. (2015). Bio-based substances from urban waste as auxiliaries for solar photo-Fenton treatment under mild conditions: Optimization of operational variables. Catalysis Today, 240, 39-45. doi:10.1016/j.cattod.2014.03.034 es_ES
dc.description.references Gomis, J., Bianco Prevot, A., Montoneri, E., González, M. C., Amat, A. M., Mártire, D. O., … Carlos, L. (2014). Waste sourced bio-based substances for solar-driven wastewater remediation: Photodegradation of emerging pollutants. Chemical Engineering Journal, 235, 236-243. doi:10.1016/j.cej.2013.09.009 es_ES
dc.description.references Avetta, P., Berto, S., Bianco Prevot, A., Minella, M., Montoneri, E., Persico, D., … Arques, A. (2015). Photoinduced transformation of waste-derived soluble bio-based substances. Chemical Engineering Journal, 274, 247-255. doi:10.1016/j.cej.2015.03.126 es_ES
dc.description.references Gomis, J., Gonçalves, M. G., Vercher, R. F., Sabater, C., Castillo, M.-A., Prevot, A. B., … Arques, A. (2015). Determination of photostability, biocompatibility and efficiency as photo-Fenton auxiliaries of three different types of soluble bio-based substances (SBO). Catalysis Today, 252, 177-183. doi:10.1016/j.cattod.2014.10.015 es_ES
dc.description.references Berkovic, A. M., García Einschlag, F. S., Gonzalez, M. C., Pis Diez, R., & Mártire, D. O. (2013). Evaluation of the Hg2+binding potential of fulvic acids from fluorescence excitation–emission matrices. Photochem. Photobiol. Sci., 12(2), 384-392. doi:10.1039/c2pp25280e es_ES
dc.description.references Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6(11), 572-579. doi:10.4319/lom.2008.6.572 es_ES
dc.description.references Ishii, S. K. L., & Boyer, T. H. (2012). Behavior of Reoccurring PARAFAC Components in Fluorescent Dissolved Organic Matter in Natural and Engineered Systems: A Critical Review. Environmental Science & Technology, 46(4), 2006-2017. doi:10.1021/es2043504 es_ES
dc.description.references Su, Y., Chen, F., & Liu, Z. (2015). Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree line: insights into sources of CDOM. Photochemical & Photobiological Sciences, 14(5), 1047-1062. doi:10.1039/c4pp00478g es_ES
dc.description.references Yang, X., Meng, F., Huang, G., Sun, L., & Lin, Z. (2014). Sunlight-induced changes in chromophores and fluorophores of wastewater-derived organic matter in receiving waters – The role of salinity. Water Research, 62, 281-292. doi:10.1016/j.watres.2014.05.050 es_ES
dc.description.references Wu, J., Zhang, H., He, P.-J., & Shao, L.-M. (2011). Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis. Water Research, 45(4), 1711-1719. doi:10.1016/j.watres.2010.11.022 es_ES
dc.description.references Yamashita, Y., & Jaffé, R. (2008). Characterizing the Interactions between Trace Metals and Dissolved Organic Matter Using Excitation−Emission Matrix and Parallel Factor Analysis. Environmental Science & Technology, 42(19), 7374-7379. doi:10.1021/es801357h es_ES
dc.description.references Nisticò, R., Barrasso, M., Carrillo Le Roux, G. A., Seckler, M. M., Sousa, W., Malandrino, M., & Magnacca, G. (2015). Biopolymers from Composted Biowaste as Stabilizers for the Synthesis of Spherical and Homogeneously Sized Silver Nanoparticles for Textile Applications on Natural Fibers. ChemPhysChem, 16(18), 3902-3909. doi:10.1002/cphc.201500721 es_ES
dc.description.references Ohno, T. (2002). Fluorescence Inner-Filtering Correction for Determining the Humification Index of Dissolved Organic Matter. Environmental Science & Technology, 36(4), 742-746. doi:10.1021/es0155276 es_ES
dc.description.references Bahram, M., Bro, R., Stedmon, C., & Afkhami, A. (2006). Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics, 20(3-4), 99-105. doi:10.1002/cem.978 es_ES
dc.description.references Ryan, D. K., & Weber, J. H. (1982). Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid. Analytical Chemistry, 54(6), 986-990. doi:10.1021/ac00243a033 es_ES
dc.description.references Yan, M., Fu, Q., Li, D., Gao, G., & Wang, D. (2013). Study of the pH influence on the optical properties of dissolved organic matter using fluorescence excitation–emission matrix and parallel factor analysis. Journal of Luminescence, 142, 103-109. doi:10.1016/j.jlumin.2013.02.052 es_ES
dc.description.references Dryer, D. J., Korshin, G. V., & Fabbricino, M. (2008). In Situ Examination of the Protonation Behavior of Fulvic Acids Using Differential Absorbance Spectroscopy. Environmental Science & Technology, 42(17), 6644-6649. doi:10.1021/es800741u es_ES
dc.description.references Ghosh, K., & Schnitzer, M. (1981). Fluorescence Excitation Spectra and Viscosity Behavior of a Fulvic Acid and its Copper and Iron Complexes1. Soil Science Society of America Journal, 45(1), 25. doi:10.2136/sssaj1981.03615995004500010005x es_ES
dc.description.references Lyon, B. A., Cory, R. M., & Weinberg, H. S. (2014). Changes in dissolved organic matter fluorescence and disinfection byproduct formation from UV and subsequent chlorination/chloramination. Journal of Hazardous Materials, 264, 411-419. doi:10.1016/j.jhazmat.2013.10.065 es_ES
dc.description.references Poulin, B. A., Ryan, J. N., & Aiken, G. R. (2014). Effects of Iron on Optical Properties of Dissolved Organic Matter. Environmental Science & Technology, 48(17), 10098-10106. doi:10.1021/es502670r es_ES
dc.description.references Xu, H., Yan, Z., Cai, H., Yu, G., Yang, L., & Jiang, H. (2013). Heterogeneity in metal binding by individual fluorescent components in a eutrophic algae-rich lake. Ecotoxicology and Environmental Safety, 98, 266-272. doi:10.1016/j.ecoenv.2013.09.008 es_ES
dc.description.references Esteves da Silva, J. (1998). Fluorescence quenching of anthropogenic fulvic acids by Cu(II), Fe(III) and UO22+. Talanta, 45(6), 1155-1165. doi:10.1016/s0039-9140(97)00224-5 es_ES
dc.description.references Zhao, J., & Nelson, D. J. (2005). Fluorescence study of the interaction of Suwannee River fulvic acid with metal ions and Al3+-metal ion competition. Journal of Inorganic Biochemistry, 99(2), 383-396. doi:10.1016/j.jinorgbio.2004.10.005 es_ES
dc.description.references Mikutta, C., & Kretzschmar, R. (2011). Spectroscopic Evidence for Ternary Complex Formation between Arsenate and Ferric Iron Complexes of Humic Substances. Environmental Science & Technology, 45(22), 9550-9557. doi:10.1021/es202300w es_ES
dc.description.references Orsetti, S., Laskov, C., & Haderlein, S. B. (2013). Electron Transfer between Iron Minerals and Quinones: Estimating the Reduction Potential of the Fe(II)-Goethite Surface from AQDS Speciation. Environmental Science & Technology, 47(24), 14161-14168. doi:10.1021/es403658g es_ES
dc.description.references Lopes, L., de Laat, J., & Legube, B. (2002). Charge Transfer of Iron(III) Monomeric and Oligomeric Aqua Hydroxo Complexes:  Semiempirical Investigation into Photoactivity. Inorganic Chemistry, 41(9), 2505-2517. doi:10.1021/ic011029m es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem