- -

Metal organic framework nanosheets in polymer composite materials for gas separation

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Metal organic framework nanosheets in polymer composite materials for gas separation

Show full item record

Ródenas Torralba, T.; Luz Mínguez, I.; Prieto González, G.; Seoane, B.; Miro, H.; Corma Canós, A.; Kapteijn, F.... (2015). Metal organic framework nanosheets in polymer composite materials for gas separation. Nature Materials. 14(1):48-55. https://doi.org/10.1038/nmat4113

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105345

Files in this item

Item Metadata

Title: Metal organic framework nanosheets in polymer composite materials for gas separation
Author: Ródenas Torralba, Tania Luz Mínguez, Ignacio Prieto González, Gonzalo Seoane, Beatriz Miro, Hozanna Corma Canós, Avelino Kapteijn, Freek Llabrés i Xamena, Francesc Xavier Gascon, Jorge
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Composites incorporating two-dimensional nanostructures within polymeric matrices have potential as functional components for several technologies, including gas separation. Prospectively, employing metal-organic ...[+]
Subjects: Electron Microscopy Service of the UPV
Copyrigths: Reserva de todos los derechos
Source:
Nature Materials. (issn: 1476-1122 )
DOI: 10.1038/nmat4113
Publisher:
Nature Publishing Group
Publisher version: http://doi.org/10.1038/nmat4113
Project ID:
info:eu-repo/grantAgreement/EC/FP7/335746/EU/Crystal Engineering of Metal Organic Frameworks for application in Mixed Matrix Membranes/
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/
Thanks:
The research leading to these results has received funding (J.G., B.S.) from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 335746, CrystEng-MOF-MMM. ...[+]
Type: Artículo

References

Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

Choi, S. et al. Layered silicates by swelling of AMH-3 and nanocomposite membranes. Angew. Chem. Int. Ed. 47, 552–555 (2008). [+]
Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

Choi, S. et al. Layered silicates by swelling of AMH-3 and nanocomposite membranes. Angew. Chem. Int. Ed. 47, 552–555 (2008).

Varoon, K. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334, 72–75 (2011).

Corma, A., Fornes, V., Pergher, S. B., Maesen, Th. L. M. & Buglass, J. G. Delaminated zeolite precursors as selective acidic catalysts. Nature 396, 353–356 (1998).

Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).

Li, P-Z., Maeda, Y. & Xu, Q. Top-down fabrication of crystalline metal-organic framework nanosheets. Chem. Commun. 47, 8436–8438 (2011).

Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246–249 (2009).

Hu, G., Wang, N., O’Hare, D. & Davis, J. One-step synthesis and AFM imaging of hydrophobic LDH monolayers. Chem. Commun. 287–289 (2006).

Yamamoto, K., Sakata, Y., Nohara, Y., Takahashi, Y. & Tatsumi, T. Organic-inorganic hybrid zeolites containing organic frameworks. Science 300, 470–472 (2003).

Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

Gücüyener, C., Bergh, J., Gascon, J. & Kapteijn, F. Ethane/ethene separation turned on its head: Selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 132, 17704–17706 (2010).

Deng, H. et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science 12, 846–850 (2010).

Khaletskaya, K. et al. Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release. J. Am. Chem. Soc. 135, 10998–11005 (2013).

Corma, A., Garcia, H. & Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2010).

Mueller, U. et al. Metal-organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).

Gascon, J. & Kapteijn, F. Metal-organic framework membranes-high potential, bright future? Angew. Chem. Int. Ed. 49, 1530–1532 (2010).

Li, Y. S. et al. Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes. Adv. Mater. 22, 3322–3326 (2010).

Gascon, J. et al. Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives. Chem. Mater. 24, 2829–2844 (2012).

Bae, T-H. et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew. Chem. Int. Ed. 49, 9863–9866 (2010).

Zornoza, B. et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chem. Commun. 47, 9522–9524 (2011).

Zornoza, B., Tellez, C., Coronas, J., Gascon, J. & Kapteijn, F. Metal organic frameworks based mixed matrix membranes: An increasingly important field of research with a large application potential. Microp. Mesop. Mater. 166, 67–78 (2013).

Zhang, C., Dai, Y., Johnson, J. R., Karvan, O. & Koros, W. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Mem. Sci. 389, 34–42 (2012).

Li, T., Pan, Y., Peinemann, K-V. & Lai, Z. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Mem. Sci. 425–426, 235–242 (2013).

Makiura, R. et al. Surface nano-architecture of a metal-organic framework. Nature Mater. 9, 565–571 (2010).

Mori, W. et al. Synthesis of new adsorbent copper(II) terephthalate. Chem. Lett. 26, 1219–1220 (1997).

Xin, Z., Bai, J., Shen, Y. & Pan, Y. Hierarchically micro- and mesoporous coordination polymer nanostructures with high adsorption performance. Cryst. Growth Des. 10, 2451–2454 (2010).

Adams, R., Carson, C., Ward, J., Tannenbaum, R. & Koros, W. Metal organic framework mixed matrix membranes for gas separations. Micropor. Mesopor. Mater. 131, 13–20 (2010).

Carson, C. G. et al. Synthesis and structure characterization of copper terephthalate metal-organic framework. Eur. J. Inorg. Chem. 2009, 2338–2343 (2009).

Ameloot, R. et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nature Chem. 3, 382–387 (2011).

Chen, Z. et al. Microporous metal-organic framework with immobilized -OH functional groups within the pore surfaces for selective gas sorption. Eur. J. Inorg. Chem. 2010, 3745–3749 (2010).

Karra, J. R. & Walton, K. S. Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal-organic frameworks. J. Phys. Chem. C 114, 15735–15740 (2010).

Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R. & Liu, J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 41, 2308–2322 (2012).

Seki, K., Takamizawa, S. & Mori, W. Characterization of microporous copper(II) dicarboxylates (fumarate, terephthalate, and trans-1,4-cyclohexanedicarboxylate) by gas adsorption. Chem. Lett. 30, 122–123 (2001).

Carson, C. G. et al. Structure solution from powder diffraction of copper 1,4-benzenedicarboxylate. Eur. J. Inorg. Chem. 2014, 2140–2145 (2014).

Corma, A., Diaz, U., Domine, M. E. & Fornes, V. AlITQ-6 and TiITQ-6: Synthesis, characterization, and catalytic activity. Angew. Chem. Int. Ed. 39, 1499–1501 (2000).

Corma, A., Fornes, V. & Diaz, U. ITQ-18 a new delaminated stable zeolite. Chem. Commun. 2642–2643 (2001).

Rouquerol, F., Rouquerol, J. & Sing, K. Adsorption by Powders and Porous Solids (Academic, 1999).

Dubinin, M. M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235–241 (1960).

Uchic, M. D., Holzer, L., Inkson, B. J., Principe, E. L. & Munroe, P. Three-dimensional microstructural characterization using focused ion beam tomography. Mater. Res. Soc. Bull. 32, 408–416 (2007).

Rodenas, T. et al. Visualizing MOF mixed matrix membranes at the nanoscale: Towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI. Adv. Funct. Mater. 24, 249–256 (2013).

Wang, X. et al. Unusual rheological behaviour of liquid polybutadiene rubber/clay nanocomposite gels: The role of polymer-clay interaction, clay exfoliation, and clay orientation and disorientation. Macromology 39, 6653–6660 (2006).

Yang, Y. et al. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 20, 14–27 (2008).

Yeo, Z. Y., Chew, T. L., Zhu, P. W., Mohamed, A. R. & Chai, S-P. Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review. J. Nature Gas Chem. 21, 282–298 (2012).

McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

Vinh-Thang, H. & Kaliaguine, S. Predictive models for mixed-matrix membrane performance: A review. Chem. Rev. 113, 4980–5028 (2013).

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record