- -

Electrochemical Characterization of Corrosion Products in Leaded Bronze Sculptures Considering Ohmic Drop Effects on Tafel Analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrochemical Characterization of Corrosion Products in Leaded Bronze Sculptures Considering Ohmic Drop Effects on Tafel Analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Domenech Carbo, Antonio es_ES
dc.contributor.author Domenech Carbo, Mª Teresa es_ES
dc.contributor.author Redondo-Marugán, Jorge es_ES
dc.contributor.author Osete Cortina, Laura es_ES
dc.contributor.author Vivancos Ramón, María Victoria es_ES
dc.date.accessioned 2018-07-06T07:15:57Z
dc.date.available 2018-07-06T07:15:57Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1040-0397 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105396
dc.description.abstract [EN] The characterization of corrosion products in leaded bronze based on the voltammetry of immobilized particles methodology is described. Voltammetric data, supported by Fourier transform infra-red spectroscopy, field emission scanning electron microscopy-energy dispersive X-ray microanalysis (FESEM-EDX) and scanning electrochemical microscopy (SECM) allow the identification of copper and lead corrosion materials. The mutual influence of such products is modeled upon considering uncompensated ohmic drops in the Tafel analysis of the rising portion of the respective voltammetric signals for their electrochemical reduction. es_ES
dc.description.sponsorship This work has been developed in cooperation with Rete dei Laboratori Universitari di Ingegneria Sismica – ReLUIS – for the research program founded by the Dipartimento della Protezione Civile (2014–2018)
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Electroanalysis es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Leaded copper and bronze es_ES
dc.subject Voltammetry of immobilized particles es_ES
dc.subject Tafel analysis es_ES
dc.subject Uncompensated ohmic drops es_ES
dc.subject SECM es_ES
dc.subject.classification PINTURA es_ES
dc.title Electrochemical Characterization of Corrosion Products in Leaded Bronze Sculptures Considering Ohmic Drop Effects on Tafel Analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/elan.201500613 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-53736-C3-1-P/ES/APLICACION DE LAS TECNICAS NANOELECTROQUIMICAS Y BIOTECNOLOGIAS EN EL ESTUDIO Y CONSERVACION DEL PATRIMONIO EN METAL/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Restauración del Patrimonio - Institut Universitari de Restauració del Patrimoni es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Conservación y Restauración de Bienes Culturales - Departament de Conservació i Restauració de Béns Culturals es_ES
dc.description.bibliographicCitation Domenech Carbo, A.; Domenech Carbo, MT.; Redondo-Marugán, J.; Osete Cortina, L.; Vivancos Ramón, MV. (2016). Electrochemical Characterization of Corrosion Products in Leaded Bronze Sculptures Considering Ohmic Drop Effects on Tafel Analysis. Electroanalysis. 28(4):833-845. https://doi.org/10.1002/elan.201500613 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/elan.201500613 es_ES
dc.description.upvformatpinicio 833 es_ES
dc.description.upvformatpfin 845 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 28 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\326836 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references D. A. Scott Copper and Bronze in Art: Corrosion, Colorants and Conservation, II Getty Publ. Los Angeles 2002. es_ES
dc.description.references HUGHES, M. J., NORTHOVER, J. P., & STANIASZEK, B. E. P. (1982). PROBLEMS IN the ANALYSIS of LEADED BRONZE ALLOYS IN ANCIENT ARTEFACTS. Oxford Journal of Archaeology, 1(3), 359-364. doi:10.1111/j.1468-0092.1982.tb00320.x es_ES
dc.description.references A History of Metallurgy es_ES
dc.description.references Technical Studies of Smithsonian Institution and Freer Gallery of Art es_ES
dc.description.references W. T. Chase Ancient, Historic Metals es_ES
dc.description.references MEEKS, N. D. (1986). TIN-RICH SURFACES ON BRONZE?SOME EXPERIMENTAL AND ARCHAEOLOGICAL CONSIDERATIONS. Archaeometry, 28(2), 133-162. doi:10.1111/j.1475-4754.1986.tb00383.x es_ES
dc.description.references Ingo, G. M., Plescia, P., Angelini, E., Riccucci, C., & de Caro, T. (2006). Bronze roman mirrors: the secret of brightness. Applied Physics A, 83(4), 611-615. doi:10.1007/s00339-006-3535-y es_ES
dc.description.references De Figueiredo Junior, J. C. D., de Freitas Cunha Lins, V., & De Bellis, V. M. (2007). Surface characterization of a corroded bronze-leaded alloy in a salt spray cabinet. Applied Surface Science, 253(17), 7104-7107. doi:10.1016/j.apsusc.2007.02.053 es_ES
dc.description.references Bosi, C., Garagnani, G. L., Imbeni, V., Martini, C., Mazzeo, R., & Poli, G. (2002). Journal of Materials Science, 37(20), 4285-4298. doi:10.1023/a:1020640216415 es_ES
dc.description.references C. S. Smith A search for structure MIT Press Ed Cambridge, 1981 85 88 es_ES
dc.description.references McCann, L. I., Trentelman, K., Possley, T., & Golding, B. (1999). Corrosion of ancient Chinese bronze money trees studied by Raman microscopy. Journal of Raman Spectroscopy, 30(2), 121-132. doi:10.1002/(sici)1097-4555(199902)30:2<121::aid-jrs355>3.0.co;2-l es_ES
dc.description.references Quaranta, M., Catelli, E., Prati, S., Sciutto, G., & Mazzeo, R. (2014). Chinese archaeological artefacts: Microstructure and corrosion behaviour of high-leaded bronzes. Journal of Cultural Heritage, 15(3), 283-291. doi:10.1016/j.culher.2013.07.007 es_ES
dc.description.references Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science, 40(12), 2083-2111. doi:10.1016/s0010-938x(98)00096-1 es_ES
dc.description.references F. Scholz B. Meyer Electroanalytical Chemistry, A Series of Advances vol. 20 1 (1998). es_ES
dc.description.references F. Scholz U. Schröder R. Gulaboski A. Doménech-Carbó Electrochemistry of Immobilized Particles and Droplets 2nd Edit. Springer Berlin-Heidelberg, 2014. es_ES
dc.description.references Doménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13 es_ES
dc.description.references A. Doménech-Carbó M. T. Doménech-Carbó V. Costa Electrochemical Methods in Archaeometry, Conservation and Restoration Springer Berlin-Heidelberg 2009. es_ES
dc.description.references Doménech-Carbó, A. (2009). Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview. Journal of Solid State Electrochemistry, 14(3), 363-379. doi:10.1007/s10008-009-0858-6 es_ES
dc.description.references Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8 es_ES
dc.description.references Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719 es_ES
dc.description.references Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3 es_ES
dc.description.references Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037 es_ES
dc.description.references Arjmand, F., & Adriaens, A. (2011). Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. Journal of Solid State Electrochemistry, 16(2), 535-543. doi:10.1007/s10008-011-1365-0 es_ES
dc.description.references Blum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, Mªa. (2011). ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis, 23(6), 1391-1400. doi:10.1002/elan.201000739 es_ES
dc.description.references Doménech, A., Doménech-Carbó, M. T., Pasies, T., & Bouzas, M. C. (2011). Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles. Electroanalysis, 23(12), 2803-2812. doi:10.1002/elan.201100577 es_ES
dc.description.references P. Letardi A. Beccaria M. Marabelli G. D’Ercoli Development of Electrochemical Impedance Spectroscopy as a Tool for Outdoors Bronze Corrosion Characterization 2 nd International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Paris Elsevier Amsterdam, 2000 407 411 es_ES
dc.description.references Rodríguez-Acuña, F., Genescá, J., & Uruchurtu, J. (2009). Electrochemical evaluation of patinas formed on nineteenth century bronze bells. Journal of Applied Electrochemistry, 40(2), 311-320. doi:10.1007/s10800-009-9977-0 es_ES
dc.description.references Rublinetskaya, Y. V., Il’inykh, E. O., & Slepushkin, V. V. (2011). A standardless method for the local electrochemical analysis of homogeneous alloys. Journal of Analytical Chemistry, 66(1), 84-87. doi:10.1134/s1061934810111024 es_ES
dc.description.references Doménech, A., Doménech-Carbó, M. T., & Martínez-Lázaro, I. (2010). Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Analytica Chimica Acta, 680(1-2), 1-9. doi:10.1016/j.aca.2010.09.002 es_ES
dc.description.references DOMÉNECH-CARBÓ, A., DOMÉNECH-CARBÓ, M. T., PEIRÓ-RONDA, M. A., & OSETE-CORTINA, L. (2011). ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE. Archaeometry, 53(6), 1193-1211. doi:10.1111/j.1475-4754.2011.00608.x es_ES
dc.description.references Doménech, A. (2011). Tracing, authenticating and dating archaeological metal using the voltammetry of microparticles. Analytical Methods, 3(10), 2181. doi:10.1039/c1ay05416c es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, M. A. (2011). Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Analytical Chemistry, 83(14), 5639-5644. doi:10.1021/ac200731q es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., Peiró-Ronda, M. A., Martínez-Lázaro, I., & Barrio-Martín, J. (2012). Application of the voltammetry of microparticles for dating archaeological lead using polarization curves and electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 16(7), 2349-2356. doi:10.1007/s10008-012-1668-9 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., Capelo, S., Pasíes, T., & Martínez-Lázaro, I. (2014). Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International Edition, 53(35), 9262-9266. doi:10.1002/anie.201404522 es_ES
dc.description.references Engstrom, R. C., Weber, M., Wunder, D. J., Burgess, R., & Winquist, S. (1986). Measurements within the diffusion layer using a microelectrode probe. Analytical Chemistry, 58(4), 844-848. doi:10.1021/ac00295a044 es_ES
dc.description.references A. J. Bard M. V. Mirkin Scanning Electrochemical Microscopy Taylor & Francis Boca Raton, 2003. es_ES
dc.description.references Guadagnini, L., Chiavari, C., Martini, C., Bernardi, E., Morselli, L., & Tonelli, D. (2011). The use of scanning electrochemical microscopy for the characterisation of patinas on copper alloys. Electrochimica Acta, 56(19), 6598-6606. doi:10.1016/j.electacta.2011.04.080 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., Silva, M., Valle-Algarra, F. M., Gimeno-Adelantado, J. V., Bosch-Reig, F., & Mateo-Castro, R. (2015). Screening and mapping of pigments in paintings using scanning electrochemical microscopy (SECM). The Analyst, 140(4), 1065-1075. doi:10.1039/c4an01911c es_ES
dc.description.references Smith, G. D., & Clark, R. J. H. (2002). Note on Lead(II) Oxide in Mediaeval Frescoes from the Monastery of San Baudelio, Spain. Applied Spectroscopy, 56(6), 804-806. doi:10.1366/000370202760077577 es_ES
dc.description.references Goltz, D., McClelland, J., Schellenberg, A., Attas, M., Cloutis, E., & Collins, C. (2003). Spectroscopic Studies on the Darkening of Lead White. Applied Spectroscopy, 57(11), 1393-1398. doi:10.1366/000370203322554563 es_ES
dc.description.references Martens, W. N., Rintoul, L., Kloprogge, J. T., & Frost, R. L. (2004). Single crystal raman spectroscopy of cerussite. American Mineralogist, 89(2-3), 352-358. doi:10.2138/am-2004-2-314 es_ES
dc.description.references Bouchard, M., & Smith, D. C. (2003). Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2247-2266. doi:10.1016/s1386-1425(03)00069-6 es_ES
dc.description.references Frost, R. L. (2003). Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(6), 1195-1204. doi:10.1016/s1386-1425(02)00315-3 es_ES
dc.description.references Hasse, U., & Scholz, F. (2001). In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochemistry Communications, 3(8), 429-434. doi:10.1016/s1388-2481(01)00194-1 es_ES
dc.description.references Hasse, U., Nießen, J., & Scholz, F. (2003). Atomic force microscopy of the electrochemical reductive dissolution of sub-micrometer sized crystals of goethite immobilized on gold electrodes. Journal of Electroanalytical Chemistry, 556, 13-22. doi:10.1016/s0022-0728(03)00316-4 es_ES
dc.description.references Hasse, U., Wagner, K., & Scholz, F. (2004). Nucleation at three-phase junction lines: in situ atomic force microscopy of the electrochemical reduction of sub-micrometer size silver and mercury(I) halide crystals immobilized on solid electrodes. Journal of Solid State Electrochemistry, 8(10). doi:10.1007/s10008-004-0552-7 es_ES
dc.description.references Doménech-Carbó, A., Doménech-Carbó, M. T., López-López, F., Valle-Algarra, F. M., Osete-Cortina, L., & Haartman, E. A.-V. (2013). Electrochemical Characterization of Egyptian Blue Pigment in Wall Paintings Using the Voltammetry of Microparticles Methodology. Electroanalysis, 25(12), 2621-2630. doi:10.1002/elan.201300417 es_ES
dc.description.references Nicholson, R. S. (1965). Some Examples of the Numerical Solution of Nonlinear Integral Equations. Analytical Chemistry, 37(6), 667-671. doi:10.1021/ac60225a009 es_ES
dc.description.references Fan, F. R. F., Mirkin, M. V., & Bard, A. J. (1994). Polymer Films on Electrodes. 25. Effect of Polymer Resistance on the Electrochemistry of Poly(vinylferrocene): Scanning Electrochemical Microscopic, Chronoamperometric, and Cyclic Voltammetric Studies. The Journal of Physical Chemistry, 98(5), 1475-1481. doi:10.1021/j100056a018 es_ES
dc.description.references Trijueque, J., Garcı́a-Jareño, J. J., Navarro-Laboulais, J., Sanmatı́as, A., & Vicente, F. (1999). Ohmic drop of Prussian-blue/graphite+epoxy electrodes. Electrochimica Acta, 45(4-5), 789-795. doi:10.1016/s0013-4686(99)00257-1 es_ES
dc.description.references Mirčeski, V., & Lovrić, M. (2001). Ohmic drop effects in square-wave voltammetry. Journal of Electroanalytical Chemistry, 497(1-2), 114-124. doi:10.1016/s0022-0728(00)00464-2 es_ES
dc.description.references Krulic, D., & Fatouros, N. (2011). Peak heights and peak widths at half-height in square wave voltammetry without and with ohmic potential drop for reversible and irreversible systems. Journal of Electroanalytical Chemistry, 652(1-2), 26-31. doi:10.1016/j.jelechem.2010.12.009 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem