D. A. Scott Copper and Bronze in Art: Corrosion, Colorants and Conservation, II Getty Publ. Los Angeles 2002.
HUGHES, M. J., NORTHOVER, J. P., & STANIASZEK, B. E. P. (1982). PROBLEMS IN the ANALYSIS of LEADED BRONZE ALLOYS IN ANCIENT ARTEFACTS. Oxford Journal of Archaeology, 1(3), 359-364. doi:10.1111/j.1468-0092.1982.tb00320.x
A History of Metallurgy
[+]
D. A. Scott Copper and Bronze in Art: Corrosion, Colorants and Conservation, II Getty Publ. Los Angeles 2002.
HUGHES, M. J., NORTHOVER, J. P., & STANIASZEK, B. E. P. (1982). PROBLEMS IN the ANALYSIS of LEADED BRONZE ALLOYS IN ANCIENT ARTEFACTS. Oxford Journal of Archaeology, 1(3), 359-364. doi:10.1111/j.1468-0092.1982.tb00320.x
A History of Metallurgy
Technical Studies of Smithsonian Institution and Freer Gallery of Art
W. T. Chase Ancient, Historic Metals
MEEKS, N. D. (1986). TIN-RICH SURFACES ON BRONZE?SOME EXPERIMENTAL AND ARCHAEOLOGICAL CONSIDERATIONS. Archaeometry, 28(2), 133-162. doi:10.1111/j.1475-4754.1986.tb00383.x
Ingo, G. M., Plescia, P., Angelini, E., Riccucci, C., & de Caro, T. (2006). Bronze roman mirrors: the secret of brightness. Applied Physics A, 83(4), 611-615. doi:10.1007/s00339-006-3535-y
De Figueiredo Junior, J. C. D., de Freitas Cunha Lins, V., & De Bellis, V. M. (2007). Surface characterization of a corroded bronze-leaded alloy in a salt spray cabinet. Applied Surface Science, 253(17), 7104-7107. doi:10.1016/j.apsusc.2007.02.053
Bosi, C., Garagnani, G. L., Imbeni, V., Martini, C., Mazzeo, R., & Poli, G. (2002). Journal of Materials Science, 37(20), 4285-4298. doi:10.1023/a:1020640216415
C. S. Smith A search for structure MIT Press Ed Cambridge, 1981 85 88
McCann, L. I., Trentelman, K., Possley, T., & Golding, B. (1999). Corrosion of ancient Chinese bronze money trees studied by Raman microscopy. Journal of Raman Spectroscopy, 30(2), 121-132. doi:10.1002/(sici)1097-4555(199902)30:2<121::aid-jrs355>3.0.co;2-l
Quaranta, M., Catelli, E., Prati, S., Sciutto, G., & Mazzeo, R. (2014). Chinese archaeological artefacts: Microstructure and corrosion behaviour of high-leaded bronzes. Journal of Cultural Heritage, 15(3), 283-291. doi:10.1016/j.culher.2013.07.007
Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science, 40(12), 2083-2111. doi:10.1016/s0010-938x(98)00096-1
F. Scholz B. Meyer Electroanalytical Chemistry, A Series of Advances vol. 20 1 (1998).
F. Scholz U. Schröder R. Gulaboski A. Doménech-Carbó Electrochemistry of Immobilized Particles and Droplets 2nd Edit. Springer Berlin-Heidelberg, 2014.
Doménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13
A. Doménech-Carbó M. T. Doménech-Carbó V. Costa Electrochemical Methods in Archaeometry, Conservation and Restoration Springer Berlin-Heidelberg 2009.
Doménech-Carbó, A. (2009). Voltammetric methods applied to identification, speciation, and quantification of analytes from works of art: an overview. Journal of Solid State Electrochemistry, 14(3), 363-379. doi:10.1007/s10008-009-0858-6
Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8
Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719
Serghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050
Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3
Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037
Arjmand, F., & Adriaens, A. (2011). Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. Journal of Solid State Electrochemistry, 16(2), 535-543. doi:10.1007/s10008-011-1365-0
Blum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317
Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, Mªa. (2011). ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis, 23(6), 1391-1400. doi:10.1002/elan.201000739
Doménech, A., Doménech-Carbó, M. T., Pasies, T., & Bouzas, M. C. (2011). Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles. Electroanalysis, 23(12), 2803-2812. doi:10.1002/elan.201100577
P. Letardi A. Beccaria M. Marabelli G. D’Ercoli Development of Electrochemical Impedance Spectroscopy as a Tool for Outdoors Bronze Corrosion Characterization 2 nd International Congress on Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin, Paris Elsevier Amsterdam, 2000 407 411
Rodríguez-Acuña, F., Genescá, J., & Uruchurtu, J. (2009). Electrochemical evaluation of patinas formed on nineteenth century bronze bells. Journal of Applied Electrochemistry, 40(2), 311-320. doi:10.1007/s10800-009-9977-0
Rublinetskaya, Y. V., Il’inykh, E. O., & Slepushkin, V. V. (2011). A standardless method for the local electrochemical analysis of homogeneous alloys. Journal of Analytical Chemistry, 66(1), 84-87. doi:10.1134/s1061934810111024
Doménech, A., Doménech-Carbó, M. T., & Martínez-Lázaro, I. (2010). Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Analytica Chimica Acta, 680(1-2), 1-9. doi:10.1016/j.aca.2010.09.002
DOMÉNECH-CARBÓ, A., DOMÉNECH-CARBÓ, M. T., PEIRÓ-RONDA, M. A., & OSETE-CORTINA, L. (2011). ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE. Archaeometry, 53(6), 1193-1211. doi:10.1111/j.1475-4754.2011.00608.x
Doménech, A. (2011). Tracing, authenticating and dating archaeological metal using the voltammetry of microparticles. Analytical Methods, 3(10), 2181. doi:10.1039/c1ay05416c
Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, M. A. (2011). Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Analytical Chemistry, 83(14), 5639-5644. doi:10.1021/ac200731q
Doménech-Carbó, A., Doménech-Carbó, M. T., Peiró-Ronda, M. A., Martínez-Lázaro, I., & Barrio-Martín, J. (2012). Application of the voltammetry of microparticles for dating archaeological lead using polarization curves and electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 16(7), 2349-2356. doi:10.1007/s10008-012-1668-9
Doménech-Carbó, A., Doménech-Carbó, M. T., Capelo, S., Pasíes, T., & Martínez-Lázaro, I. (2014). Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International Edition, 53(35), 9262-9266. doi:10.1002/anie.201404522
Engstrom, R. C., Weber, M., Wunder, D. J., Burgess, R., & Winquist, S. (1986). Measurements within the diffusion layer using a microelectrode probe. Analytical Chemistry, 58(4), 844-848. doi:10.1021/ac00295a044
A. J. Bard M. V. Mirkin Scanning Electrochemical Microscopy Taylor & Francis Boca Raton, 2003.
Guadagnini, L., Chiavari, C., Martini, C., Bernardi, E., Morselli, L., & Tonelli, D. (2011). The use of scanning electrochemical microscopy for the characterisation of patinas on copper alloys. Electrochimica Acta, 56(19), 6598-6606. doi:10.1016/j.electacta.2011.04.080
Doménech-Carbó, A., Doménech-Carbó, M. T., Silva, M., Valle-Algarra, F. M., Gimeno-Adelantado, J. V., Bosch-Reig, F., & Mateo-Castro, R. (2015). Screening and mapping of pigments in paintings using scanning electrochemical microscopy (SECM). The Analyst, 140(4), 1065-1075. doi:10.1039/c4an01911c
Smith, G. D., & Clark, R. J. H. (2002). Note on Lead(II) Oxide in Mediaeval Frescoes from the Monastery of San Baudelio, Spain. Applied Spectroscopy, 56(6), 804-806. doi:10.1366/000370202760077577
Goltz, D., McClelland, J., Schellenberg, A., Attas, M., Cloutis, E., & Collins, C. (2003). Spectroscopic Studies on the Darkening of Lead White. Applied Spectroscopy, 57(11), 1393-1398. doi:10.1366/000370203322554563
Martens, W. N., Rintoul, L., Kloprogge, J. T., & Frost, R. L. (2004). Single crystal raman spectroscopy of cerussite. American Mineralogist, 89(2-3), 352-358. doi:10.2138/am-2004-2-314
Bouchard, M., & Smith, D. C. (2003). Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2247-2266. doi:10.1016/s1386-1425(03)00069-6
Frost, R. L. (2003). Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(6), 1195-1204. doi:10.1016/s1386-1425(02)00315-3
Hasse, U., & Scholz, F. (2001). In situ atomic force microscopy of the reduction of lead oxide nanocrystals immobilised on an electrode surface. Electrochemistry Communications, 3(8), 429-434. doi:10.1016/s1388-2481(01)00194-1
Hasse, U., Nießen, J., & Scholz, F. (2003). Atomic force microscopy of the electrochemical reductive dissolution of sub-micrometer sized crystals of goethite immobilized on gold electrodes. Journal of Electroanalytical Chemistry, 556, 13-22. doi:10.1016/s0022-0728(03)00316-4
Hasse, U., Wagner, K., & Scholz, F. (2004). Nucleation at three-phase junction lines: in situ atomic force microscopy of the electrochemical reduction of sub-micrometer size silver and mercury(I) halide crystals immobilized on solid electrodes. Journal of Solid State Electrochemistry, 8(10). doi:10.1007/s10008-004-0552-7
Doménech-Carbó, A., Doménech-Carbó, M. T., López-López, F., Valle-Algarra, F. M., Osete-Cortina, L., & Haartman, E. A.-V. (2013). Electrochemical Characterization of Egyptian Blue Pigment in Wall Paintings Using the Voltammetry of Microparticles Methodology. Electroanalysis, 25(12), 2621-2630. doi:10.1002/elan.201300417
Nicholson, R. S. (1965). Some Examples of the Numerical Solution of Nonlinear Integral Equations. Analytical Chemistry, 37(6), 667-671. doi:10.1021/ac60225a009
Fan, F. R. F., Mirkin, M. V., & Bard, A. J. (1994). Polymer Films on Electrodes. 25. Effect of Polymer Resistance on the Electrochemistry of Poly(vinylferrocene): Scanning Electrochemical Microscopic, Chronoamperometric, and Cyclic Voltammetric Studies. The Journal of Physical Chemistry, 98(5), 1475-1481. doi:10.1021/j100056a018
Trijueque, J., Garcı́a-Jareño, J. J., Navarro-Laboulais, J., Sanmatı́as, A., & Vicente, F. (1999). Ohmic drop of Prussian-blue/graphite+epoxy electrodes. Electrochimica Acta, 45(4-5), 789-795. doi:10.1016/s0013-4686(99)00257-1
Mirčeski, V., & Lovrić, M. (2001). Ohmic drop effects in square-wave voltammetry. Journal of Electroanalytical Chemistry, 497(1-2), 114-124. doi:10.1016/s0022-0728(00)00464-2
Krulic, D., & Fatouros, N. (2011). Peak heights and peak widths at half-height in square wave voltammetry without and with ohmic potential drop for reversible and irreversible systems. Journal of Electroanalytical Chemistry, 652(1-2), 26-31. doi:10.1016/j.jelechem.2010.12.009
[-]