- -

Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology

Mostrar el registro completo del ítem

Martinez-Iniesta, M.; Rodenas, J.; Alcaraz, R.; Rieta, JJ. (2017). Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology. Annals of Biomedical Engineering. 45(8):1890-1907. https://doi.org/10.1007/s10439-017-1832-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105466

Ficheros en el ítem

Metadatos del ítem

Título: Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology
Autor: Martinez-Iniesta, Miguel Rodenas, Juan Alcaraz, Raúl Rieta, J J
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Atrial fibrillation (AF) is the most common arrhythmia in clinical practice with an increasing prevalence of about 15% in the elderly. Despite other alternatives, catheter ablation is currently considered as the ...[+]
Palabras clave: Atrial fibrillation , Electrogram , Filtering , Wavelet transform , Empirical mode decomposition
Derechos de uso: Cerrado
Fuente:
Annals of Biomedical Engineering. (issn: 0090-6964 )
DOI: 10.1007/s10439-017-1832-6
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s10439-017-1832-6
Código del Proyecto:
info:eu-repo/grantAgreement/JCCM//PPII11-0194-8121/ES/Análisis No Lineal Aplicado a la Estimación Avanzada de Organización Como Herramienta de Mejora Diagnóstica y Terapéutica en Fibrilación Auricular/
info:eu-repo/grantAgreement/JCCM//PPII11-0194-8121/
info:eu-repo/grantAgreement/MINECO//TEC2014-52250-R/ES/CUANTIFICACION DEL REMODELADO ELECTROANATOMICO EN ARRITMIAS CARDIACAS. DE LA INVESTIGACION A LA TERAPIA PERSONALIZADA./
MINISTERIO DE ECONOMIA INDUSTRIA Y COMPETITIVIDAD /TEC2010-20633
Agradecimientos:
This work was supported by the projects TEC201452250-R from the Spanish Ministry of Economy and Competitiveness and PPII-2014-026-P from Junta de Comunidades de Castilla-La Mancha.
Tipo: Artículo

References

Addison, P. S. Wavelet transforms and the ECG: a review. Physiol. Meas. 26(5):R155–R199, 2005.

Aksu, T., T. E. Guler, K. Yalin, and A. Oto. Unanswered questions in complex fractionated atrial electrogram ablation. Pacing Clin. Electrophysiol. 39(11):1269–1278, 2016.

Alcaraz, R., F. Hornero, and J. J. Rieta. Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms. Physiol. Meas. 32(1):99–114, 2011. [+]
Addison, P. S. Wavelet transforms and the ECG: a review. Physiol. Meas. 26(5):R155–R199, 2005.

Aksu, T., T. E. Guler, K. Yalin, and A. Oto. Unanswered questions in complex fractionated atrial electrogram ablation. Pacing Clin. Electrophysiol. 39(11):1269–1278, 2016.

Alcaraz, R., F. Hornero, and J. J. Rieta. Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms. Physiol. Meas. 32(1):99–114, 2011.

Atienza, F., J. Almendral, J. Jalife, S. Zlochiver, R. Ploutz-Snyder, E. G. Torrecilla, A. Arenal, J. Kalifa, F. Fernández-Avilés, and O. Berenfeld. Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm 6(1):33–40, 2009.

Atienza, F., J. Almendral, J. Moreno, R. Vaidyanathan, A. Talkachou, J. Kalifa, A. Arenal, J. P. Villacastín, E. G. Torrecilla, A. Sánchez, R. Ploutz-Snyder, J. Jalife, and O. Berenfeld. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation 114(23):2434–2442, 2006.

Blanco-Velasco, M., B. Weng, and K. E. Barner. ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 38(1):1–13, 2008.

Boardman, A., F. S. Schlindwein, A. P. Rocha, and A. Leite. A study on the optimum order of autoregressive models for heart rate variability. Physiol. Meas. 23(2):325–336, 2002.

Botteron, G. W. and J. M. Smith. A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Trans. Biomed. Eng. 42(6):579–586, 1995.

Castells, F., R. Cervigón, and J. Millet. On the preprocessing of atrial electrograms in atrial fibrillation: understanding Botteron’s approach. Pacing Clin. Electrophysiol. 37(2):133–143, 2014.

Chang, K.-M. Ensemble empirical mode decomposition for high frequency ECG noise reduction. Biomed. Tech. (Berl.) 55(4):193–201, 2010.

Chen, S.-W. and Y.-H. Chen. Hardware design and implementation of a wavelet de-noising procedure for medical signal preprocessing. Sensors (Basel) 15(10):26396–26414, 2015.

Chugh, S. S., R. Havmoeller, K. Narayanan, D. Singh, M. Rienstra, E. J. Benjamin, R. F. Gillum, Y.-H. Kim, J. H. McAnulty, Jr, Z.-J. Zheng, M. H. Forouzanfar, M. Naghavi, G. A. Mensah, M. Ezzati, and C. J. L. Murray. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129(8):837–847, 2014.

Ciaccio, E. J., A. B. Biviano, and H. Garan. Computational method for high resolution spectral analysis of fractionated atrial electrograms. Comput. Biol. Med. 43(10):1573–1582, 2013.

Corino, V. D. A., M. W. Rivolta, R. Sassi, F. Lombardi, and L. T. Mainardi. Ventricular activity cancellation in electrograms during atrial fibrillation with constraints on residuals’ power. Med. Eng. Phys. 35(12):1770–1777, 2013.

de Bakker, J. M. T. and F. H. M. Wittkampf. The pathophysiologic basis of fractionated and complex electrograms and the impact of recording techniques on their detection and interpretation. Circ. Arrhythm. Electrophysiol. 3(2):204–213, 2010.

Donoho, D. and I. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455, 1994.

Donoho, D. and I. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90:1200–1224, 1995.

Everett, IV, T. H., L. C. Kok, R. H. Vaughn, J. R. Moorman, and D. E. Haines. Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Trans. Biomed. Eng. 48(9):969–978, 2001.

Faes, L., G. Nollo, R. Antolini, F. Gaita, and F. Ravelli. A method for quantifying atrial fibrillation organization based on wave-morphology similarity. IEEE Trans. Biomed. Eng. 49(12 Pt 2):1504–1513, 2002.

Flandrin, P., G. Rilling, and P. Goncalves. Empirical mode decomposition as a filter bank. IEE Signal Process. Lett. 11:112–114, 2004.

Gutiérrez-Gnecchi, J. A., R. Morfin-Magana, D. Lorias-Espinoza, A. C. Tellez-Anguiano, E. Reyes-Archundia, A. Méndez-Patino, and R. Castaneda-Miranda. DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomed. Signal Process. Control 32:44–56, 2017.

Haïssaguerre, M., M. Hocini, A. Denis, A. J. Shah, Y. Komatsu, S. Yamashita, M. Daly, S. Amraoui, S. Zellerhoff, M.-Q. Picat, A. Quotb, L. Jesel, H. Lim, S. Ploux, P. Bordachar, G. Attuel, V. Meillet, P. Ritter, N. Derval, F. Sacher, O. Bernus, H. Cochet, P. Jaïs, and R. Dubois. Driver domains in persistent atrial fibrillation. Circulation 130(7):530–538, 2014.

Heijman, J., V. Algalarrondo, N. Voigt, J. Melka, X. H. T. Wehrens, D. Dobrev, and S. Nattel. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovasc. Res. 109(4):467–479, 2016.

Houben, R. P. M. and M. A. Allessie. Processing of intracardiac electrograms in atrial fibrillation. Diagnosis of electropathological substrate of AF. IEEE Eng. Med. Biol. Mag. 25(6):40–51, 2006.

Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454:903–995, 1998.

Issa, Z. F., J. W. Miller, and D. P. Zipes. Clinical Arrhythmology and Electrophysiology: A Comparison to Braunwald’s Heart Disease, 2nd ed. Amsterdam: Elsevier, 2012.

Jenkal, W., R. Latif, A. Toumanari, et al. An efficient algorithm of ECG signal denoising using the adaptive dual threshold filter and the discrete wavelet transform. Biocybern. Biomed. Eng. 36(3):499–508, 2016.

Kabir, M. A. and C. Shahnaz. Denoising ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed. Signal Process. Control 7:481–489, 2012.

Koutalas, E., S. Rolf, B. Dinov, S. Richter, A. Arya, A. Bollmann, G. Hindricks, and P. Sommer. Contemporary mapping techniques of complex cardiac arrhythmias–identifying and modifying the arrhythmogenic substrate. Arrhythm. Electrophysiol. Rev. 4(1):19–27, 2015.

Lahmiri, S. Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. Healthc. Technol. Lett. 1(3):104–109, 2014.

Lian, J., G. Garner, D. Muessing, and V. Lang. A simple method to quantify the morphological similarity between signals. Signal Process. 90:684–688, 2010.

Liang, H., Q.-H. Lin, and J. D. Z. Chen. Application of the empirical mode decomposition to the analysis of esophageal manometric data in gastroesophageal reflux disease. IEEE Trans. Biomed. Eng. 52(10):1692–1701, 2005.

Luo, S. and P. Johnston. A review of electrocardiogram filtering. J. Electrocardiol. 43(6):486–496, 2010.

Mallat, S. A Wavelet Tour of Signal Processing. Burlington: Academic Press, 1999.

Narayan, S. M. and J. A. B. Zaman. Mechanistically based mapping of human cardiac fibrillation. J. Physiol. 594(9):2399–2415, 2016.

Nedios, S., P. Sommer, A. Bollmann, and G. Hindricks. Advanced mapping systems to guide atrial fibrillation ablation: electrical information that matters. J. Atr. Fibrillation 8(6):1337, 2016.

Ng, J., A. I. Borodyanskiy, E. T. Chang, R. Villuendas, S. Dibs, A. H. Kadish, and J. J. Goldberger. Measuring the complexity of atrial fibrillation electrograms. J. Cardiovasc. Electrophysiol. 21(6):649–655, 2010.

Ng, J. and J. J. Goldberger, eds. Intracardiac electrograms. In Practical Signal and Image Processing in Clinical Cardiology. London: Springer, 2010, pp. 319–348.

Ng, J., A. H. Kadish, and J. J. Goldberger. Technical considerations for dominant frequency analysis. J. Cardiovasc. Electrophysiol. 18(7):757–764, 2007.

Ng, J., V. Sehgal, J. K. Ng, D. Gordon, and J. J. Goldberger. Iterative method to detect atrial activations and measure cycle length from electrograms during atrial fibrillation. IEEE Trans. Biomed. Eng. 61(2):273–278, 2014.

Nollo, G., M. Marconcini, L. Faes, F. Bovolo, F. Ravelli, and L. Bruzzone. An automatic system for the analysis and classification of human atrial fibrillation patterns from intracardiac electrograms. IEEE Trans. Biomed. Eng. 55(9):2275–2285, 2008.

Oesterlein, T. G., G. Lenis, D.-T. Rudolph, A. Luik, B. Verma, C. Schmitt, and O. Dössel. Removing ventricular far-field signals in intracardiac electrograms during stable atrial tachycardia using the periodic component analysis. J. Electrocardiol. 48(2):171–180, 2015.

Poornachandra, S. and N. Kumaravel. A novel method for the elimination of power line frequency in ECG signal using hyper shrinkage function. Digital Signal Process. 18(2):116–126, 2008.

Potter, B. J. and J. Le Lorier. Taking the pulse of atrial fibrillation. Lancet 386(9989):113–115, 2015.

Rafiee, J., M. A. Rafiee, N. Prause, and M. P. Schoen. Wavelet basis functions in biomedical signal processing. Expert Syst. Biomed. Signal Process. 38:6190–6201, 2011.

Ravelli, F., M. Masè, A. Cristoforetti, M. Marini, and M. Disertori. The logical operator map identifies novel candidate markers for critical sites in patients with atrial fibrillation. Prog. Biophys. Mol. Biol. 115(2–3):186–197, 2014.

Sanchez, C., J. J. Rieta, F. Castells, J. Ródenas, and J. Millet. Atrial activity extraction in Holter registers using adaptive Wavelet analysis. Annual International Conference of Computers in Cardiology, vol. 30, pp. 569–572, 2003.

Sanders, P., O. Berenfeld, M. Hocini, P. Jaïs, R. Vaidyanathan, L.-F. Hsu, S. Garrigue, Y. Takahashi, M. Rotter, F. Sacher, C. Scavée, R. Ploutz-Snyder, J. Jalife, and M. Haïssaguerre. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation 112(6):789–797, 2005.

Schnabel, R. B., X. Yin, P. Gona, M. G. Larson, A. S. Beiser, D. D. McManus, C. Newton-Cheh, S. A. Lubitz, J. W. Magnani, P. T. Ellinor, S. Seshadri, P. A. Wolf, R. S. Vasan, E. J. Benjamin, and D. Levy. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet 386(9989):154–162, 2015.

Schotten, U., D. Dobrev, P. G. Platonov, H. Kottkamp, and G. Hindricks. Current controversies in determining the main mechanisms of atrial fibrillation. J. Intern. Med. 279(5):428–438, 2016.

Singh, B. N. and A. K. Tiwari. Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Process. 16:275–287, 2006.

Smital, L., M. Vítek, J. Kozumplík, and I. Provazník. Adaptive wavelet Wiener filtering of ECG signals. IEEE Trans. Biomed. Eng. 60(2):437–445, 2013.

Stevenson, W. G. and K. Soejima. Recording techniques for clinical electrophysiology. J. Cardiovasc. Electrophysiol. 16(9):1017–1022, 2005.

Tikkanen, P. E. Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal. Biol. Cybern. 80(4):259–267, 1999.

Venkatachalam, K. L., J. E. Herbrandson, and S. J. Asirvatham. Signals and signal processing for the electrophysiologist. Part I: electrogram acquisition. Circ. Arrhythm. Electrophysiol. 4(6):965–973, 2011.

Venkatachalam, K. L., J. E. Herbrandson, and S. J. Asirvatham. Signals and signal processing for the electrophysiologist. Part II: signal processing and artifact. Circ. Arrhythm. Electrophysiol. 4(6):974–981, 2011.

Wodchis, W. P., R. S. Bhatia, K. Leblanc, N. Meshkat, and D. Morra. A review of the cost of atrial fibrillation. Value Health 15(2):240–248, 2012.

Wynn, G. J., M. Das, L. J. Bonnett, S. Panikker, T. Wong, and D. Gupta. Efficacy of catheter ablation for persistent atrial fibrillation: a systematic review and meta-analysis of evidence from randomized and nonrandomized controlled trials. Circ. Arrhythm. Electrophysiol. 7(5):841–852, 2014.

Xiong, F., X. Qi, S. Nattel, and P. Comtois. Wavelet analysis of cardiac optical mapping data. Comput. Biol. Med. 65:243–255, 2015.

Zoni-Berisso, M., F. Lercari, T. Carazza, and S. Domenicucci. Epidemiology of atrial fibrillation: European perspective. Clin. Epidemiol. 6:213–220, 2014.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem