- -

Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martinez-Iniesta, Miguel es_ES
dc.contributor.author Rodenas, Juan es_ES
dc.contributor.author Alcaraz, Raúl es_ES
dc.contributor.author Rieta, J J es_ES
dc.date.accessioned 2018-07-07T04:24:35Z
dc.date.available 2018-07-07T04:24:35Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0090-6964 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105466
dc.description.abstract [EN] Atrial fibrillation (AF) is the most common arrhythmia in clinical practice with an increasing prevalence of about 15% in the elderly. Despite other alternatives, catheter ablation is currently considered as the first-line therapy for the treatment of AF. This strategy relies on cardiac electrophysiology systems, which use intracardiac electrograms (EGM) as the basis to determine the cardiac structures contributing to sustain the arrhythmia. However, the noise-free acquisition of these recordings is impossible and they are often contaminated by different perturbations. Although suppression of nuisance signals without affecting the original EGM pattern is essential for any other later analysis, not much attention has been paid to this issue, being frequently considered as trivial. The present work introduces the first thorough study on the significant fallout that regular filtering, aimed at reducing acquisition noise, provokes on EGM pattern morphology. This approach has been compared with more refined denoising strategies. Performance has been assessed both in time and frequency by well established parameters for EGM characterization. The study comprised synthesized and real EGMs with unipolar and bipolar recordings. Results reported that regular filtering altered substantially atrial waveform morphology and was unable to remove moderate amounts of noise, thus turning time and spectral characterization of the EGM notably inaccurate. Methods based on Wavelet transform provided the highest ability to preserve EGM morphology with improvements between 20 and beyond 40%, to minimize dominant atrial frequency estimation error with up to 25% reduction, as well as to reduce huge levels of noise with up to 10 dB better reduction. Consequently, these algorithms are recommended as a replacement of regular filtering to avoid significant alterations in the EGMs. This could lead to more accurate and truthful analyses of atrial activity dynamics aimed at understanding and locating the sources of AF. es_ES
dc.description.sponsorship This work was supported by the projects TEC201452250-R from the Spanish Ministry of Economy and Competitiveness and PPII-2014-026-P from Junta de Comunidades de Castilla-La Mancha. en_EN
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation MINISTERIO DE ECONOMIA INDUSTRIA Y COMPETITIVIDAD /TEC2010-20633 es_ES
dc.relation.ispartof Annals of Biomedical Engineering es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Atrial fibrillation es_ES
dc.subject Electrogram es_ES
dc.subject Filtering es_ES
dc.subject Wavelet transform es_ES
dc.subject Empirical mode decomposition es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10439-017-1832-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//PPII11-0194-8121/ES/Análisis No Lineal Aplicado a la Estimación Avanzada de Organización Como Herramienta de Mejora Diagnóstica y Terapéutica en Fibrilación Auricular/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JCCM//PPII11-0194-8121/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-52250-R/ES/CUANTIFICACION DEL REMODELADO ELECTROANATOMICO EN ARRITMIAS CARDIACAS. DE LA INVESTIGACION A LA TERAPIA PERSONALIZADA./ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Martinez-Iniesta, M.; Rodenas, J.; Alcaraz, R.; Rieta, JJ. (2017). Waveform Integrity in Atrial Fibrillation: The Forgotten Issue of Cardiac Electrophysiology. Annals of Biomedical Engineering. 45(8):1890-1907. https://doi.org/10.1007/s10439-017-1832-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10439-017-1832-6 es_ES
dc.description.upvformatpinicio 1890 es_ES
dc.description.upvformatpfin 1907 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 45 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\337532 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Junta de Comunidades de Castilla-La Mancha es_ES
dc.description.references Addison, P. S. Wavelet transforms and the ECG: a review. Physiol. Meas. 26(5):R155–R199, 2005. es_ES
dc.description.references Aksu, T., T. E. Guler, K. Yalin, and A. Oto. Unanswered questions in complex fractionated atrial electrogram ablation. Pacing Clin. Electrophysiol. 39(11):1269–1278, 2016. es_ES
dc.description.references Alcaraz, R., F. Hornero, and J. J. Rieta. Assessment of non-invasive time and frequency atrial fibrillation organization markers with unipolar atrial electrograms. Physiol. Meas. 32(1):99–114, 2011. es_ES
dc.description.references Atienza, F., J. Almendral, J. Jalife, S. Zlochiver, R. Ploutz-Snyder, E. G. Torrecilla, A. Arenal, J. Kalifa, F. Fernández-Avilés, and O. Berenfeld. Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm 6(1):33–40, 2009. es_ES
dc.description.references Atienza, F., J. Almendral, J. Moreno, R. Vaidyanathan, A. Talkachou, J. Kalifa, A. Arenal, J. P. Villacastín, E. G. Torrecilla, A. Sánchez, R. Ploutz-Snyder, J. Jalife, and O. Berenfeld. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation 114(23):2434–2442, 2006. es_ES
dc.description.references Blanco-Velasco, M., B. Weng, and K. E. Barner. ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 38(1):1–13, 2008. es_ES
dc.description.references Boardman, A., F. S. Schlindwein, A. P. Rocha, and A. Leite. A study on the optimum order of autoregressive models for heart rate variability. Physiol. Meas. 23(2):325–336, 2002. es_ES
dc.description.references Botteron, G. W. and J. M. Smith. A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Trans. Biomed. Eng. 42(6):579–586, 1995. es_ES
dc.description.references Castells, F., R. Cervigón, and J. Millet. On the preprocessing of atrial electrograms in atrial fibrillation: understanding Botteron’s approach. Pacing Clin. Electrophysiol. 37(2):133–143, 2014. es_ES
dc.description.references Chang, K.-M. Ensemble empirical mode decomposition for high frequency ECG noise reduction. Biomed. Tech. (Berl.) 55(4):193–201, 2010. es_ES
dc.description.references Chen, S.-W. and Y.-H. Chen. Hardware design and implementation of a wavelet de-noising procedure for medical signal preprocessing. Sensors (Basel) 15(10):26396–26414, 2015. es_ES
dc.description.references Chugh, S. S., R. Havmoeller, K. Narayanan, D. Singh, M. Rienstra, E. J. Benjamin, R. F. Gillum, Y.-H. Kim, J. H. McAnulty, Jr, Z.-J. Zheng, M. H. Forouzanfar, M. Naghavi, G. A. Mensah, M. Ezzati, and C. J. L. Murray. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129(8):837–847, 2014. es_ES
dc.description.references Ciaccio, E. J., A. B. Biviano, and H. Garan. Computational method for high resolution spectral analysis of fractionated atrial electrograms. Comput. Biol. Med. 43(10):1573–1582, 2013. es_ES
dc.description.references Corino, V. D. A., M. W. Rivolta, R. Sassi, F. Lombardi, and L. T. Mainardi. Ventricular activity cancellation in electrograms during atrial fibrillation with constraints on residuals’ power. Med. Eng. Phys. 35(12):1770–1777, 2013. es_ES
dc.description.references de Bakker, J. M. T. and F. H. M. Wittkampf. The pathophysiologic basis of fractionated and complex electrograms and the impact of recording techniques on their detection and interpretation. Circ. Arrhythm. Electrophysiol. 3(2):204–213, 2010. es_ES
dc.description.references Donoho, D. and I. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455, 1994. es_ES
dc.description.references Donoho, D. and I. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90:1200–1224, 1995. es_ES
dc.description.references Everett, IV, T. H., L. C. Kok, R. H. Vaughn, J. R. Moorman, and D. E. Haines. Frequency domain algorithm for quantifying atrial fibrillation organization to increase defibrillation efficacy. IEEE Trans. Biomed. Eng. 48(9):969–978, 2001. es_ES
dc.description.references Faes, L., G. Nollo, R. Antolini, F. Gaita, and F. Ravelli. A method for quantifying atrial fibrillation organization based on wave-morphology similarity. IEEE Trans. Biomed. Eng. 49(12 Pt 2):1504–1513, 2002. es_ES
dc.description.references Flandrin, P., G. Rilling, and P. Goncalves. Empirical mode decomposition as a filter bank. IEE Signal Process. Lett. 11:112–114, 2004. es_ES
dc.description.references Gutiérrez-Gnecchi, J. A., R. Morfin-Magana, D. Lorias-Espinoza, A. C. Tellez-Anguiano, E. Reyes-Archundia, A. Méndez-Patino, and R. Castaneda-Miranda. DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomed. Signal Process. Control 32:44–56, 2017. es_ES
dc.description.references Haïssaguerre, M., M. Hocini, A. Denis, A. J. Shah, Y. Komatsu, S. Yamashita, M. Daly, S. Amraoui, S. Zellerhoff, M.-Q. Picat, A. Quotb, L. Jesel, H. Lim, S. Ploux, P. Bordachar, G. Attuel, V. Meillet, P. Ritter, N. Derval, F. Sacher, O. Bernus, H. Cochet, P. Jaïs, and R. Dubois. Driver domains in persistent atrial fibrillation. Circulation 130(7):530–538, 2014. es_ES
dc.description.references Heijman, J., V. Algalarrondo, N. Voigt, J. Melka, X. H. T. Wehrens, D. Dobrev, and S. Nattel. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis. Cardiovasc. Res. 109(4):467–479, 2016. es_ES
dc.description.references Houben, R. P. M. and M. A. Allessie. Processing of intracardiac electrograms in atrial fibrillation. Diagnosis of electropathological substrate of AF. IEEE Eng. Med. Biol. Mag. 25(6):40–51, 2006. es_ES
dc.description.references Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454:903–995, 1998. es_ES
dc.description.references Issa, Z. F., J. W. Miller, and D. P. Zipes. Clinical Arrhythmology and Electrophysiology: A Comparison to Braunwald’s Heart Disease, 2nd ed. Amsterdam: Elsevier, 2012. es_ES
dc.description.references Jenkal, W., R. Latif, A. Toumanari, et al. An efficient algorithm of ECG signal denoising using the adaptive dual threshold filter and the discrete wavelet transform. Biocybern. Biomed. Eng. 36(3):499–508, 2016. es_ES
dc.description.references Kabir, M. A. and C. Shahnaz. Denoising ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed. Signal Process. Control 7:481–489, 2012. es_ES
dc.description.references Koutalas, E., S. Rolf, B. Dinov, S. Richter, A. Arya, A. Bollmann, G. Hindricks, and P. Sommer. Contemporary mapping techniques of complex cardiac arrhythmias–identifying and modifying the arrhythmogenic substrate. Arrhythm. Electrophysiol. Rev. 4(1):19–27, 2015. es_ES
dc.description.references Lahmiri, S. Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. Healthc. Technol. Lett. 1(3):104–109, 2014. es_ES
dc.description.references Lian, J., G. Garner, D. Muessing, and V. Lang. A simple method to quantify the morphological similarity between signals. Signal Process. 90:684–688, 2010. es_ES
dc.description.references Liang, H., Q.-H. Lin, and J. D. Z. Chen. Application of the empirical mode decomposition to the analysis of esophageal manometric data in gastroesophageal reflux disease. IEEE Trans. Biomed. Eng. 52(10):1692–1701, 2005. es_ES
dc.description.references Luo, S. and P. Johnston. A review of electrocardiogram filtering. J. Electrocardiol. 43(6):486–496, 2010. es_ES
dc.description.references Mallat, S. A Wavelet Tour of Signal Processing. Burlington: Academic Press, 1999. es_ES
dc.description.references Narayan, S. M. and J. A. B. Zaman. Mechanistically based mapping of human cardiac fibrillation. J. Physiol. 594(9):2399–2415, 2016. es_ES
dc.description.references Nedios, S., P. Sommer, A. Bollmann, and G. Hindricks. Advanced mapping systems to guide atrial fibrillation ablation: electrical information that matters. J. Atr. Fibrillation 8(6):1337, 2016. es_ES
dc.description.references Ng, J., A. I. Borodyanskiy, E. T. Chang, R. Villuendas, S. Dibs, A. H. Kadish, and J. J. Goldberger. Measuring the complexity of atrial fibrillation electrograms. J. Cardiovasc. Electrophysiol. 21(6):649–655, 2010. es_ES
dc.description.references Ng, J. and J. J. Goldberger, eds. Intracardiac electrograms. In Practical Signal and Image Processing in Clinical Cardiology. London: Springer, 2010, pp. 319–348. es_ES
dc.description.references Ng, J., A. H. Kadish, and J. J. Goldberger. Technical considerations for dominant frequency analysis. J. Cardiovasc. Electrophysiol. 18(7):757–764, 2007. es_ES
dc.description.references Ng, J., V. Sehgal, J. K. Ng, D. Gordon, and J. J. Goldberger. Iterative method to detect atrial activations and measure cycle length from electrograms during atrial fibrillation. IEEE Trans. Biomed. Eng. 61(2):273–278, 2014. es_ES
dc.description.references Nollo, G., M. Marconcini, L. Faes, F. Bovolo, F. Ravelli, and L. Bruzzone. An automatic system for the analysis and classification of human atrial fibrillation patterns from intracardiac electrograms. IEEE Trans. Biomed. Eng. 55(9):2275–2285, 2008. es_ES
dc.description.references Oesterlein, T. G., G. Lenis, D.-T. Rudolph, A. Luik, B. Verma, C. Schmitt, and O. Dössel. Removing ventricular far-field signals in intracardiac electrograms during stable atrial tachycardia using the periodic component analysis. J. Electrocardiol. 48(2):171–180, 2015. es_ES
dc.description.references Poornachandra, S. and N. Kumaravel. A novel method for the elimination of power line frequency in ECG signal using hyper shrinkage function. Digital Signal Process. 18(2):116–126, 2008. es_ES
dc.description.references Potter, B. J. and J. Le Lorier. Taking the pulse of atrial fibrillation. Lancet 386(9989):113–115, 2015. es_ES
dc.description.references Rafiee, J., M. A. Rafiee, N. Prause, and M. P. Schoen. Wavelet basis functions in biomedical signal processing. Expert Syst. Biomed. Signal Process. 38:6190–6201, 2011. es_ES
dc.description.references Ravelli, F., M. Masè, A. Cristoforetti, M. Marini, and M. Disertori. The logical operator map identifies novel candidate markers for critical sites in patients with atrial fibrillation. Prog. Biophys. Mol. Biol. 115(2–3):186–197, 2014. es_ES
dc.description.references Sanchez, C., J. J. Rieta, F. Castells, J. Ródenas, and J. Millet. Atrial activity extraction in Holter registers using adaptive Wavelet analysis. Annual International Conference of Computers in Cardiology, vol. 30, pp. 569–572, 2003. es_ES
dc.description.references Sanders, P., O. Berenfeld, M. Hocini, P. Jaïs, R. Vaidyanathan, L.-F. Hsu, S. Garrigue, Y. Takahashi, M. Rotter, F. Sacher, C. Scavée, R. Ploutz-Snyder, J. Jalife, and M. Haïssaguerre. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation 112(6):789–797, 2005. es_ES
dc.description.references Schnabel, R. B., X. Yin, P. Gona, M. G. Larson, A. S. Beiser, D. D. McManus, C. Newton-Cheh, S. A. Lubitz, J. W. Magnani, P. T. Ellinor, S. Seshadri, P. A. Wolf, R. S. Vasan, E. J. Benjamin, and D. Levy. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet 386(9989):154–162, 2015. es_ES
dc.description.references Schotten, U., D. Dobrev, P. G. Platonov, H. Kottkamp, and G. Hindricks. Current controversies in determining the main mechanisms of atrial fibrillation. J. Intern. Med. 279(5):428–438, 2016. es_ES
dc.description.references Singh, B. N. and A. K. Tiwari. Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Process. 16:275–287, 2006. es_ES
dc.description.references Smital, L., M. Vítek, J. Kozumplík, and I. Provazník. Adaptive wavelet Wiener filtering of ECG signals. IEEE Trans. Biomed. Eng. 60(2):437–445, 2013. es_ES
dc.description.references Stevenson, W. G. and K. Soejima. Recording techniques for clinical electrophysiology. J. Cardiovasc. Electrophysiol. 16(9):1017–1022, 2005. es_ES
dc.description.references Tikkanen, P. E. Nonlinear wavelet and wavelet packet denoising of electrocardiogram signal. Biol. Cybern. 80(4):259–267, 1999. es_ES
dc.description.references Venkatachalam, K. L., J. E. Herbrandson, and S. J. Asirvatham. Signals and signal processing for the electrophysiologist. Part I: electrogram acquisition. Circ. Arrhythm. Electrophysiol. 4(6):965–973, 2011. es_ES
dc.description.references Venkatachalam, K. L., J. E. Herbrandson, and S. J. Asirvatham. Signals and signal processing for the electrophysiologist. Part II: signal processing and artifact. Circ. Arrhythm. Electrophysiol. 4(6):974–981, 2011. es_ES
dc.description.references Wodchis, W. P., R. S. Bhatia, K. Leblanc, N. Meshkat, and D. Morra. A review of the cost of atrial fibrillation. Value Health 15(2):240–248, 2012. es_ES
dc.description.references Wynn, G. J., M. Das, L. J. Bonnett, S. Panikker, T. Wong, and D. Gupta. Efficacy of catheter ablation for persistent atrial fibrillation: a systematic review and meta-analysis of evidence from randomized and nonrandomized controlled trials. Circ. Arrhythm. Electrophysiol. 7(5):841–852, 2014. es_ES
dc.description.references Xiong, F., X. Qi, S. Nattel, and P. Comtois. Wavelet analysis of cardiac optical mapping data. Comput. Biol. Med. 65:243–255, 2015. es_ES
dc.description.references Zoni-Berisso, M., F. Lercari, T. Carazza, and S. Domenicucci. Epidemiology of atrial fibrillation: European perspective. Clin. Epidemiol. 6:213–220, 2014. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem