- -

Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide

Show full item record

Mora-Gómez, J.; García Gabaldón, M.; Martí Calatayud, MC.; Mestre, S.; Pérez-Herranz, V. (2017). Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide. Journal of the American Ceramic Society. 100(9):4180-4189. doi:10.1111/jace.14978

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105487

Files in this item

Item Metadata

Title: Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide
Author: Mora-Gómez, Julia García Gabaldón, Montserrat Martí Calatayud, Manuel César Mestre, Sergio Pérez-Herranz, Valentín
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental
Issued date:
Embargo end date: 2018-09-01
Abstract:
[EN] In this research, low-cost ceramic anion-exchange membranes have been developed from porous supports manufactured, using a chamotte as a pore former. An inorganic anion-exchanger (hydrated cerium dioxide) has been ...[+]
Subjects: Ceramic anion-exchange membranes , Chronopotentiometry , Hydrated cerium dioxide , Ion-exchange capacity
Copyrigths: Reserva de todos los derechos
Source:
Journal of the American Ceramic Society. (issn: 0002-7820 )
DOI: 10.1111/jace.14978
Publisher:
Blackwell Publishing
Publisher version: http://doi.org/10.1111/jace.14978
Project ID:
MINECO/CTQ2012-37450-C02-01
Description: This is the peer reviewed version of the following article: Mora-Gómez, Julia, García Gabaldón, Montserrat, Martí Calatayud, Manuel César, Mestre, Sergio, Pérez-Herranz, Valentín. (2017). Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide.Journal of the American Ceramic Society, 100, 9, 4180-4189. DOI: 10.1111/jace.14978, which has been published in final form at http://doi.org/10.1111/jace.14978. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving
Thanks:
Ministerio de Economia y Competitividad (Spain), Grant/Award Number: CTQ2012-3750-C02-01/PPQ, CTQ2012-3750-C02-02/PPQ
Type: Artículo

References

Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Ortega, E., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127. doi:10.1016/j.desal.2013.11.031

Ortiz, J. M., Sotoca, J. A., Expósito, E., Gallud, F., García-García, V., Montiel, V., & Aldaz, A. (2005). Brackish water desalination by electrodialysis: batch recirculation operation modeling. Journal of Membrane Science, 252(1-2), 65-75. doi:10.1016/j.memsci.2004.11.021

Huang, K.-L., Holsen, T. M., & Selman, J. . (2003). Impurity diffusion through Nafion and ceramic separators used for electrolytic purification of spent chromium plating solutions. Journal of Membrane Science, 221(1-2), 135-146. doi:10.1016/s0376-7388(03)00254-0 [+]
Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Ortega, E., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127. doi:10.1016/j.desal.2013.11.031

Ortiz, J. M., Sotoca, J. A., Expósito, E., Gallud, F., García-García, V., Montiel, V., & Aldaz, A. (2005). Brackish water desalination by electrodialysis: batch recirculation operation modeling. Journal of Membrane Science, 252(1-2), 65-75. doi:10.1016/j.memsci.2004.11.021

Huang, K.-L., Holsen, T. M., & Selman, J. . (2003). Impurity diffusion through Nafion and ceramic separators used for electrolytic purification of spent chromium plating solutions. Journal of Membrane Science, 221(1-2), 135-146. doi:10.1016/s0376-7388(03)00254-0

Sharifian, H. (1986). Electrochemical Oxidation of Phenol. Journal of The Electrochemical Society, 133(5), 921. doi:10.1149/1.2108763

Linkov, V. ., & Belyakov, V. . (2001). Novel ceramic membranes for electrodialysis. Separation and Purification Technology, 25(1-3), 57-63. doi:10.1016/s1383-5866(01)00090-9

Okada, T. (1999). Theory for water management in membranes for polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 465(1), 1-17. doi:10.1016/s0022-0728(99)00065-0

Okada, T. (1999). Theory for water management in membranes for polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 465(1), 18-29. doi:10.1016/s0022-0728(98)00415-x

Guddati, S. L., Holsen, T. M., Li, C.-C., Selman, J. R., & Mandich, N. V. (1999). Journal of Applied Electrochemistry, 29(9), 1129-1132. doi:10.1023/a:1003544822054

Gallaher, G. R., & Liu, P. K. T. (1994). Characterization of ceramic membranes I. Thermal and hydrothermal stabilities of commercial 40 Å membranes. Journal of Membrane Science, 92(1), 29-44. doi:10.1016/0376-7388(94)80011-1

Dzyazko, Y. S., Mahmoud, A., Lapicque, F., & Belyakov, V. N. (2006). Cr(VI) transport through ceramic ion-exchange membranes for treatment of industrial wastewaters. Journal of Applied Electrochemistry, 37(2), 209-217. doi:10.1007/s10800-006-9243-7

Sui, Y., Fu, X., Zeng, R., & Ma, X. (2004). Preparation, characterization and application of a new type of ion exchanger and solid acid zirconium sulfonated oligo-polystyrenylphosphonate-phosphate supported on ZrO2. Journal of Molecular Catalysis A: Chemical, 217(1-2), 133-138. doi:10.1016/j.molcata.2004.03.003

Rodrigues, L. A., Maschio, L. J., da Silva, R. E., & da Silva, M. L. C. P. (2010). Adsorption of Cr(VI) from aqueous solution by hydrous zirconium oxide. Journal of Hazardous Materials, 173(1-3), 630-636. doi:10.1016/j.jhazmat.2009.08.131

Dzyazko, Y. S., Rudenko, A. S., Yukhin, Y. M., Palchik, A. V., & Belyakov, V. N. (2014). Modification of ceramic membranes with inorganic sorbents. Application to electrodialytic recovery of Cr(VI) anions from multicomponent solution. Desalination, 342, 52-60. doi:10.1016/j.desal.2013.12.019

Dzyazko, Y. S., Vasilyuk, S. L., Rozhdestvenskaya, L. M., Belyakov, V. N., Stefanyak, N. V., Kabay, N., … Yüksel, Ü. (2008). ELECTRO-DEIONIZATION OF Cr (VI)-CONTAINING SOLUTION. PART II: CHROMIUM TRANSPORT THROUGH INORGANIC ION-EXCHANGER AND COMPOSITE CERAMIC MEMBRANE. Chemical Engineering Communications, 196(1-2), 22-38. doi:10.1080/00986440802303715

Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., Sales, S., & Mestre, S. (2015). Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Advances, 5(57), 46348-46358. doi:10.1039/c5ra04169d

Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., Sales, S., & Mestre, S. (2013). Synthesis and electrochemical behavior of ceramic cation-exchange membranes based on zirconium phosphate. Ceramics International, 39(4), 4045-4054. doi:10.1016/j.ceramint.2012.10.255

Singh, S., Patel, P., Shahi, V. K., & Chudasama, U. (2011). Pb2+ selective and highly cross-linked zirconium phosphonate membrane by sol–gel in aqueous media for electrochemical applications. Desalination, 276(1-3), 175-183. doi:10.1016/j.desal.2011.03.048

Tripathi, B. P., & Shahi, V. K. (2007). SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. Journal of Colloid and Interface Science, 316(2), 612-621. doi:10.1016/j.jcis.2007.08.038

Dzyaz’ko, Y. S., Linkov, V. M., & Belyakov, V. N. (2009). Transport of sulfate anions through inorganic membranes modified by ion-exchange material. Russian Journal of Electrochemistry, 45(12), 1333-1339. doi:10.1134/s1023193509120039

Kogure, M., Ohya, H., Paterson, R., Hosaka, M., Kim, J.-J., & McFadzean, S. (1997). Properties of new inorganic membranes prepared by metal alkoxide methods Part II: New inorganic-organic anion-exchange membranes prepared by the modified metal alkoxide methods with silane coupling agents. Journal of Membrane Science, 126(1), 161-169. doi:10.1016/s0376-7388(96)00289-x

Ohya, H., Masaoka, K., Aihara, M., & Negishi, Y. (1998). Properties of new inorganic membranes prepared by metal alkoxide methods. Part III: New inorganic lithium permselective ion exchange membrane. Journal of Membrane Science, 146(1), 9-13. doi:10.1016/s0376-7388(98)00084-2

Wu, C., Xu, T., & Yang, W. (2003). A new inorganic–organic negatively charged membrane: membrane preparation and characterizations. Journal of Membrane Science, 224(1-2), 117-125. doi:10.1016/j.memsci.2003.07.004

Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. Journal of Membrane Science, 379(1-2), 449-458. doi:10.1016/j.memsci.2011.06.014

Długołęcki, P., Anet, B., Metz, S. J., Nijmeijer, K., & Wessling, M. (2010). Transport limitations in ion exchange membranes at low salt concentrations. Journal of Membrane Science, 346(1), 163-171. doi:10.1016/j.memsci.2009.09.033

Balster, J., Yildirim, M. H., Stamatialis, D. F., Ibanez, R., Lammertink, R. G. H., Jordan, V., & Wessling, M. (2007). Morphology and Microtopology of Cation-Exchange Polymers and the Origin of the Overlimiting Current. The Journal of Physical Chemistry B, 111(9), 2152-2165. doi:10.1021/jp068474t

Taky, M., Pourcelly, G., Lebon, F., & Gavach, C. (1992). Polarization phenomena at the interfaces between an electrolyte solution and an ion exchange membrane. Journal of Electroanalytical Chemistry, 336(1-2), 171-194. doi:10.1016/0022-0728(92)80270-e

Clearfield, A. (1988). Role of ion exchange in solid-state chemistry. Chemical Reviews, 88(1), 125-148. doi:10.1021/cr00083a007

Barragán, V. M., & Bauzá, C. R. (2002). Current–Voltage Curves for a Cation-Exchange Membrane in Methanol–Water Electrolyte Solutions. Journal of Colloid and Interface Science, 247(1), 138-148. doi:10.1006/jcis.2001.8065

Tanaka, Y. (2003). Concentration polarization in ion-exchange membrane electrodialysis—the events arising in a flowing solution in a desalting cell. Journal of Membrane Science, 216(1-2), 149-164. doi:10.1016/s0376-7388(03)00067-x

Shapiro, V., Freger, V., Linder, C., & Oren, Y. (2008). Transport Properties of Highly Ordered Heterogeneous Ion-Exchange Membranes. The Journal of Physical Chemistry B, 112(31), 9389-9399. doi:10.1021/jp711169q

Choi, J.-H., Lee, H.-J., & Moon, S.-H. (2001). Effects of Electrolytes on the Transport Phenomena in a Cation-Exchange Membrane. Journal of Colloid and Interface Science, 238(1), 188-195. doi:10.1006/jcis.2001.7510

Kumar, M., Tripathi, B. P., & Shahi, V. K. (2009). Ionic transport phenomenon across sol–gel derived organic–inorganic composite mono-valent cation selective membranes. Journal of Membrane Science, 340(1-2), 52-61. doi:10.1016/j.memsci.2009.05.010

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record