- -

Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mora-Gómez, Julia es_ES
dc.contributor.author García Gabaldón, Montserrat es_ES
dc.contributor.author Martí Calatayud, Manuel César es_ES
dc.contributor.author Mestre, Sergio es_ES
dc.contributor.author Pérez-Herranz, Valentín es_ES
dc.date.accessioned 2018-07-08T04:26:41Z
dc.date.available 2018-07-08T04:26:41Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0002-7820 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105487
dc.description This is the peer reviewed version of the following article: Mora-Gómez, Julia, García Gabaldón, Montserrat, Martí Calatayud, Manuel César, Mestre, Sergio, Pérez-Herranz, Valentín. (2017). Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide.Journal of the American Ceramic Society, 100, 9, 4180-4189. DOI: 10.1111/jace.14978, which has been published in final form at http://doi.org/10.1111/jace.14978. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving
dc.description.abstract [EN] In this research, low-cost ceramic anion-exchange membranes have been developed from porous supports manufactured, using a chamotte as a pore former. An inorganic anion-exchanger (hydrated cerium dioxide) has been deposited into the support and fixed by thermal treatment. The effects of some process variables (such as the temperature of the thermal treatment or the pH of the electrolyte) on the properties of the anion-exchange membranes have been investigated. The electrochemical performance of the resulting membranes has been compared to that exhibited by ceramic anion-exchange membranes based on another anion exchanger (hydrated zirconium dioxide) deposited into alumina-kaolin supports. The temperature of the thermal treatment applied to fix the hydrated cerium dioxide (HCeD) does not affect the structure nor the electrochemical properties of the membranes. The porosity of the supports obtained, using a chamotte as the pore former was lower than that of the alumina-kaolin ones, which led to a lower deposition of hydrated cerium dioxide than that obtained for hydrated zirconium dioxide (HZrD) in alumina-kaolin supports. The higher porosity registered for the HZrD-based membrane also implies higher membrane conductivities. The selective transport of anions through the membranes was enhanced by increasing the number of infiltrating steps, as confirmed from current to voltage curves. However, this behavior was only apparent at acidic or neutral pH, thus confirming the amphoteric character of the anion-exchanger. Comparing the parameter (equivalents of ion exchanger per gram of deposited oxide), it is concluded that the porosity of the ceramic supports, consequence of their distinct microstructure, is the main parameter responsible for the difference in the ion-exchange capacity obtained for HZrD and HCeD membranes. Consequently, the CeO2 particles used in this work are also good candidates to impart ion-exchange properties to microporous ceramic supports. es_ES
dc.description.sponsorship Ministerio de Economia y Competitividad (Spain), Grant/Award Number: CTQ2012-3750-C02-01/PPQ, CTQ2012-3750-C02-02/PPQ es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Journal of the American Ceramic Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ceramic anion-exchange membranes es_ES
dc.subject Chronopotentiometry es_ES
dc.subject Hydrated cerium dioxide es_ES
dc.subject Ion-exchange capacity es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/jace.14978 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-37450-C02-01/ES/CARACTERIZACION ELECTROQUIMICA DE MEMBRANAS CERAMICAS NANOESTRUCTURADAS DE INTERCAMBIO IONICO PARA SU APLICACION EN REACTORES ELECTROQUIMICOS Y SISTEMAS ELECTRODIALITICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-09-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental es_ES
dc.description.bibliographicCitation Mora-Gómez, J.; García Gabaldón, M.; Martí Calatayud, MC.; Mestre, S.; Pérez-Herranz, V. (2017). Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide. Journal of the American Ceramic Society. 100(9):4180-4189. https://doi.org/10.1111/jace.14978 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1111/jace.14978 es_ES
dc.description.upvformatpinicio 4180 es_ES
dc.description.upvformatpfin 4189 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 100 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\343110 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Ortega, E., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127. doi:10.1016/j.desal.2013.11.031 es_ES
dc.description.references Ortiz, J. M., Sotoca, J. A., Expósito, E., Gallud, F., García-García, V., Montiel, V., & Aldaz, A. (2005). Brackish water desalination by electrodialysis: batch recirculation operation modeling. Journal of Membrane Science, 252(1-2), 65-75. doi:10.1016/j.memsci.2004.11.021 es_ES
dc.description.references Huang, K.-L., Holsen, T. M., & Selman, J. . (2003). Impurity diffusion through Nafion and ceramic separators used for electrolytic purification of spent chromium plating solutions. Journal of Membrane Science, 221(1-2), 135-146. doi:10.1016/s0376-7388(03)00254-0 es_ES
dc.description.references Sharifian, H. (1986). Electrochemical Oxidation of Phenol. Journal of The Electrochemical Society, 133(5), 921. doi:10.1149/1.2108763 es_ES
dc.description.references Linkov, V. ., & Belyakov, V. . (2001). Novel ceramic membranes for electrodialysis. Separation and Purification Technology, 25(1-3), 57-63. doi:10.1016/s1383-5866(01)00090-9 es_ES
dc.description.references Okada, T. (1999). Theory for water management in membranes for polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 465(1), 1-17. doi:10.1016/s0022-0728(99)00065-0 es_ES
dc.description.references Okada, T. (1999). Theory for water management in membranes for polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 465(1), 18-29. doi:10.1016/s0022-0728(98)00415-x es_ES
dc.description.references Guddati, S. L., Holsen, T. M., Li, C.-C., Selman, J. R., & Mandich, N. V. (1999). Journal of Applied Electrochemistry, 29(9), 1129-1132. doi:10.1023/a:1003544822054 es_ES
dc.description.references Gallaher, G. R., & Liu, P. K. T. (1994). Characterization of ceramic membranes I. Thermal and hydrothermal stabilities of commercial 40 Å membranes. Journal of Membrane Science, 92(1), 29-44. doi:10.1016/0376-7388(94)80011-1 es_ES
dc.description.references Dzyazko, Y. S., Mahmoud, A., Lapicque, F., & Belyakov, V. N. (2006). Cr(VI) transport through ceramic ion-exchange membranes for treatment of industrial wastewaters. Journal of Applied Electrochemistry, 37(2), 209-217. doi:10.1007/s10800-006-9243-7 es_ES
dc.description.references Sui, Y., Fu, X., Zeng, R., & Ma, X. (2004). Preparation, characterization and application of a new type of ion exchanger and solid acid zirconium sulfonated oligo-polystyrenylphosphonate-phosphate supported on ZrO2. Journal of Molecular Catalysis A: Chemical, 217(1-2), 133-138. doi:10.1016/j.molcata.2004.03.003 es_ES
dc.description.references Rodrigues, L. A., Maschio, L. J., da Silva, R. E., & da Silva, M. L. C. P. (2010). Adsorption of Cr(VI) from aqueous solution by hydrous zirconium oxide. Journal of Hazardous Materials, 173(1-3), 630-636. doi:10.1016/j.jhazmat.2009.08.131 es_ES
dc.description.references Dzyazko, Y. S., Rudenko, A. S., Yukhin, Y. M., Palchik, A. V., & Belyakov, V. N. (2014). Modification of ceramic membranes with inorganic sorbents. Application to electrodialytic recovery of Cr(VI) anions from multicomponent solution. Desalination, 342, 52-60. doi:10.1016/j.desal.2013.12.019 es_ES
dc.description.references Dzyazko, Y. S., Vasilyuk, S. L., Rozhdestvenskaya, L. M., Belyakov, V. N., Stefanyak, N. V., Kabay, N., … Yüksel, Ü. (2008). ELECTRO-DEIONIZATION OF Cr (VI)-CONTAINING SOLUTION. PART II: CHROMIUM TRANSPORT THROUGH INORGANIC ION-EXCHANGER AND COMPOSITE CERAMIC MEMBRANE. Chemical Engineering Communications, 196(1-2), 22-38. doi:10.1080/00986440802303715 es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., Sales, S., & Mestre, S. (2015). Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Advances, 5(57), 46348-46358. doi:10.1039/c5ra04169d es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., Sales, S., & Mestre, S. (2013). Synthesis and electrochemical behavior of ceramic cation-exchange membranes based on zirconium phosphate. Ceramics International, 39(4), 4045-4054. doi:10.1016/j.ceramint.2012.10.255 es_ES
dc.description.references Singh, S., Patel, P., Shahi, V. K., & Chudasama, U. (2011). Pb2+ selective and highly cross-linked zirconium phosphonate membrane by sol–gel in aqueous media for electrochemical applications. Desalination, 276(1-3), 175-183. doi:10.1016/j.desal.2011.03.048 es_ES
dc.description.references Tripathi, B. P., & Shahi, V. K. (2007). SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. Journal of Colloid and Interface Science, 316(2), 612-621. doi:10.1016/j.jcis.2007.08.038 es_ES
dc.description.references Dzyaz’ko, Y. S., Linkov, V. M., & Belyakov, V. N. (2009). Transport of sulfate anions through inorganic membranes modified by ion-exchange material. Russian Journal of Electrochemistry, 45(12), 1333-1339. doi:10.1134/s1023193509120039 es_ES
dc.description.references Kogure, M., Ohya, H., Paterson, R., Hosaka, M., Kim, J.-J., & McFadzean, S. (1997). Properties of new inorganic membranes prepared by metal alkoxide methods Part II: New inorganic-organic anion-exchange membranes prepared by the modified metal alkoxide methods with silane coupling agents. Journal of Membrane Science, 126(1), 161-169. doi:10.1016/s0376-7388(96)00289-x es_ES
dc.description.references Ohya, H., Masaoka, K., Aihara, M., & Negishi, Y. (1998). Properties of new inorganic membranes prepared by metal alkoxide methods. Part III: New inorganic lithium permselective ion exchange membrane. Journal of Membrane Science, 146(1), 9-13. doi:10.1016/s0376-7388(98)00084-2 es_ES
dc.description.references Wu, C., Xu, T., & Yang, W. (2003). A new inorganic–organic negatively charged membrane: membrane preparation and characterizations. Journal of Membrane Science, 224(1-2), 117-125. doi:10.1016/j.memsci.2003.07.004 es_ES
dc.description.references Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. Journal of Membrane Science, 379(1-2), 449-458. doi:10.1016/j.memsci.2011.06.014 es_ES
dc.description.references Długołęcki, P., Anet, B., Metz, S. J., Nijmeijer, K., & Wessling, M. (2010). Transport limitations in ion exchange membranes at low salt concentrations. Journal of Membrane Science, 346(1), 163-171. doi:10.1016/j.memsci.2009.09.033 es_ES
dc.description.references Balster, J., Yildirim, M. H., Stamatialis, D. F., Ibanez, R., Lammertink, R. G. H., Jordan, V., & Wessling, M. (2007). Morphology and Microtopology of Cation-Exchange Polymers and the Origin of the Overlimiting Current. The Journal of Physical Chemistry B, 111(9), 2152-2165. doi:10.1021/jp068474t es_ES
dc.description.references Taky, M., Pourcelly, G., Lebon, F., & Gavach, C. (1992). Polarization phenomena at the interfaces between an electrolyte solution and an ion exchange membrane. Journal of Electroanalytical Chemistry, 336(1-2), 171-194. doi:10.1016/0022-0728(92)80270-e es_ES
dc.description.references Clearfield, A. (1988). Role of ion exchange in solid-state chemistry. Chemical Reviews, 88(1), 125-148. doi:10.1021/cr00083a007 es_ES
dc.description.references Barragán, V. M., & Bauzá, C. R. (2002). Current–Voltage Curves for a Cation-Exchange Membrane in Methanol–Water Electrolyte Solutions. Journal of Colloid and Interface Science, 247(1), 138-148. doi:10.1006/jcis.2001.8065 es_ES
dc.description.references Tanaka, Y. (2003). Concentration polarization in ion-exchange membrane electrodialysis—the events arising in a flowing solution in a desalting cell. Journal of Membrane Science, 216(1-2), 149-164. doi:10.1016/s0376-7388(03)00067-x es_ES
dc.description.references Shapiro, V., Freger, V., Linder, C., & Oren, Y. (2008). Transport Properties of Highly Ordered Heterogeneous Ion-Exchange Membranes. The Journal of Physical Chemistry B, 112(31), 9389-9399. doi:10.1021/jp711169q es_ES
dc.description.references Choi, J.-H., Lee, H.-J., & Moon, S.-H. (2001). Effects of Electrolytes on the Transport Phenomena in a Cation-Exchange Membrane. Journal of Colloid and Interface Science, 238(1), 188-195. doi:10.1006/jcis.2001.7510 es_ES
dc.description.references Kumar, M., Tripathi, B. P., & Shahi, V. K. (2009). Ionic transport phenomenon across sol–gel derived organic–inorganic composite mono-valent cation selective membranes. Journal of Membrane Science, 340(1-2), 52-61. doi:10.1016/j.memsci.2009.05.010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem