Mostrar el registro sencillo del ítem
dc.contributor.author | Mora-Gómez, Julia | es_ES |
dc.contributor.author | García Gabaldón, Montserrat | es_ES |
dc.contributor.author | Martí Calatayud, Manuel César | es_ES |
dc.contributor.author | Mestre, Sergio | es_ES |
dc.contributor.author | Pérez-Herranz, Valentín | es_ES |
dc.date.accessioned | 2018-07-08T04:26:41Z | |
dc.date.available | 2018-07-08T04:26:41Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0002-7820 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/105487 | |
dc.description | This is the peer reviewed version of the following article: Mora-Gómez, Julia, García Gabaldón, Montserrat, Martí Calatayud, Manuel César, Mestre, Sergio, Pérez-Herranz, Valentín. (2017). Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide.Journal of the American Ceramic Society, 100, 9, 4180-4189. DOI: 10.1111/jace.14978, which has been published in final form at http://doi.org/10.1111/jace.14978. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving | |
dc.description.abstract | [EN] In this research, low-cost ceramic anion-exchange membranes have been developed from porous supports manufactured, using a chamotte as a pore former. An inorganic anion-exchanger (hydrated cerium dioxide) has been deposited into the support and fixed by thermal treatment. The effects of some process variables (such as the temperature of the thermal treatment or the pH of the electrolyte) on the properties of the anion-exchange membranes have been investigated. The electrochemical performance of the resulting membranes has been compared to that exhibited by ceramic anion-exchange membranes based on another anion exchanger (hydrated zirconium dioxide) deposited into alumina-kaolin supports. The temperature of the thermal treatment applied to fix the hydrated cerium dioxide (HCeD) does not affect the structure nor the electrochemical properties of the membranes. The porosity of the supports obtained, using a chamotte as the pore former was lower than that of the alumina-kaolin ones, which led to a lower deposition of hydrated cerium dioxide than that obtained for hydrated zirconium dioxide (HZrD) in alumina-kaolin supports. The higher porosity registered for the HZrD-based membrane also implies higher membrane conductivities. The selective transport of anions through the membranes was enhanced by increasing the number of infiltrating steps, as confirmed from current to voltage curves. However, this behavior was only apparent at acidic or neutral pH, thus confirming the amphoteric character of the anion-exchanger. Comparing the parameter (equivalents of ion exchanger per gram of deposited oxide), it is concluded that the porosity of the ceramic supports, consequence of their distinct microstructure, is the main parameter responsible for the difference in the ion-exchange capacity obtained for HZrD and HCeD membranes. Consequently, the CeO2 particles used in this work are also good candidates to impart ion-exchange properties to microporous ceramic supports. | es_ES |
dc.description.sponsorship | Ministerio de Economia y Competitividad (Spain), Grant/Award Number: CTQ2012-3750-C02-01/PPQ, CTQ2012-3750-C02-02/PPQ | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Journal of the American Ceramic Society | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ceramic anion-exchange membranes | es_ES |
dc.subject | Chronopotentiometry | es_ES |
dc.subject | Hydrated cerium dioxide | es_ES |
dc.subject | Ion-exchange capacity | es_ES |
dc.subject.classification | INGENIERIA QUIMICA | es_ES |
dc.title | Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/jace.14978 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2012-37450-C02-01/ES/CARACTERIZACION ELECTROQUIMICA DE MEMBRANAS CERAMICAS NANOESTRUCTURADAS DE INTERCAMBIO IONICO PARA SU APLICACION EN REACTORES ELECTROQUIMICOS Y SISTEMAS ELECTRODIALITICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-09-01 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental | es_ES |
dc.description.bibliographicCitation | Mora-Gómez, J.; García Gabaldón, M.; Martí Calatayud, MC.; Mestre, S.; Pérez-Herranz, V. (2017). Anion transport through ceramic electrodialysis membranes made with hydrated cerium dioxide. Journal of the American Ceramic Society. 100(9):4180-4189. https://doi.org/10.1111/jace.14978 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1111/jace.14978 | es_ES |
dc.description.upvformatpinicio | 4180 | es_ES |
dc.description.upvformatpfin | 4189 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 100 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.pasarela | S\343110 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Martí-Calatayud, M. C., Buzzi, D. C., García-Gabaldón, M., Ortega, E., Bernardes, A. M., Tenório, J. A. S., & Pérez-Herranz, V. (2014). Sulfuric acid recovery from acid mine drainage by means of electrodialysis. Desalination, 343, 120-127. doi:10.1016/j.desal.2013.11.031 | es_ES |
dc.description.references | Ortiz, J. M., Sotoca, J. A., Expósito, E., Gallud, F., García-García, V., Montiel, V., & Aldaz, A. (2005). Brackish water desalination by electrodialysis: batch recirculation operation modeling. Journal of Membrane Science, 252(1-2), 65-75. doi:10.1016/j.memsci.2004.11.021 | es_ES |
dc.description.references | Huang, K.-L., Holsen, T. M., & Selman, J. . (2003). Impurity diffusion through Nafion and ceramic separators used for electrolytic purification of spent chromium plating solutions. Journal of Membrane Science, 221(1-2), 135-146. doi:10.1016/s0376-7388(03)00254-0 | es_ES |
dc.description.references | Sharifian, H. (1986). Electrochemical Oxidation of Phenol. Journal of The Electrochemical Society, 133(5), 921. doi:10.1149/1.2108763 | es_ES |
dc.description.references | Linkov, V. ., & Belyakov, V. . (2001). Novel ceramic membranes for electrodialysis. Separation and Purification Technology, 25(1-3), 57-63. doi:10.1016/s1383-5866(01)00090-9 | es_ES |
dc.description.references | Okada, T. (1999). Theory for water management in membranes for polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 465(1), 1-17. doi:10.1016/s0022-0728(99)00065-0 | es_ES |
dc.description.references | Okada, T. (1999). Theory for water management in membranes for polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 465(1), 18-29. doi:10.1016/s0022-0728(98)00415-x | es_ES |
dc.description.references | Guddati, S. L., Holsen, T. M., Li, C.-C., Selman, J. R., & Mandich, N. V. (1999). Journal of Applied Electrochemistry, 29(9), 1129-1132. doi:10.1023/a:1003544822054 | es_ES |
dc.description.references | Gallaher, G. R., & Liu, P. K. T. (1994). Characterization of ceramic membranes I. Thermal and hydrothermal stabilities of commercial 40 Å membranes. Journal of Membrane Science, 92(1), 29-44. doi:10.1016/0376-7388(94)80011-1 | es_ES |
dc.description.references | Dzyazko, Y. S., Mahmoud, A., Lapicque, F., & Belyakov, V. N. (2006). Cr(VI) transport through ceramic ion-exchange membranes for treatment of industrial wastewaters. Journal of Applied Electrochemistry, 37(2), 209-217. doi:10.1007/s10800-006-9243-7 | es_ES |
dc.description.references | Sui, Y., Fu, X., Zeng, R., & Ma, X. (2004). Preparation, characterization and application of a new type of ion exchanger and solid acid zirconium sulfonated oligo-polystyrenylphosphonate-phosphate supported on ZrO2. Journal of Molecular Catalysis A: Chemical, 217(1-2), 133-138. doi:10.1016/j.molcata.2004.03.003 | es_ES |
dc.description.references | Rodrigues, L. A., Maschio, L. J., da Silva, R. E., & da Silva, M. L. C. P. (2010). Adsorption of Cr(VI) from aqueous solution by hydrous zirconium oxide. Journal of Hazardous Materials, 173(1-3), 630-636. doi:10.1016/j.jhazmat.2009.08.131 | es_ES |
dc.description.references | Dzyazko, Y. S., Rudenko, A. S., Yukhin, Y. M., Palchik, A. V., & Belyakov, V. N. (2014). Modification of ceramic membranes with inorganic sorbents. Application to electrodialytic recovery of Cr(VI) anions from multicomponent solution. Desalination, 342, 52-60. doi:10.1016/j.desal.2013.12.019 | es_ES |
dc.description.references | Dzyazko, Y. S., Vasilyuk, S. L., Rozhdestvenskaya, L. M., Belyakov, V. N., Stefanyak, N. V., Kabay, N., … Yüksel, Ü. (2008). ELECTRO-DEIONIZATION OF Cr (VI)-CONTAINING SOLUTION. PART II: CHROMIUM TRANSPORT THROUGH INORGANIC ION-EXCHANGER AND COMPOSITE CERAMIC MEMBRANE. Chemical Engineering Communications, 196(1-2), 22-38. doi:10.1080/00986440802303715 | es_ES |
dc.description.references | Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., Sales, S., & Mestre, S. (2015). Ceramic anion-exchange membranes based on microporous supports infiltrated with hydrated zirconium dioxide. RSC Advances, 5(57), 46348-46358. doi:10.1039/c5ra04169d | es_ES |
dc.description.references | Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., Sales, S., & Mestre, S. (2013). Synthesis and electrochemical behavior of ceramic cation-exchange membranes based on zirconium phosphate. Ceramics International, 39(4), 4045-4054. doi:10.1016/j.ceramint.2012.10.255 | es_ES |
dc.description.references | Singh, S., Patel, P., Shahi, V. K., & Chudasama, U. (2011). Pb2+ selective and highly cross-linked zirconium phosphonate membrane by sol–gel in aqueous media for electrochemical applications. Desalination, 276(1-3), 175-183. doi:10.1016/j.desal.2011.03.048 | es_ES |
dc.description.references | Tripathi, B. P., & Shahi, V. K. (2007). SPEEK–zirconium hydrogen phosphate composite membranes with low methanol permeability prepared by electro-migration and in situ precipitation. Journal of Colloid and Interface Science, 316(2), 612-621. doi:10.1016/j.jcis.2007.08.038 | es_ES |
dc.description.references | Dzyaz’ko, Y. S., Linkov, V. M., & Belyakov, V. N. (2009). Transport of sulfate anions through inorganic membranes modified by ion-exchange material. Russian Journal of Electrochemistry, 45(12), 1333-1339. doi:10.1134/s1023193509120039 | es_ES |
dc.description.references | Kogure, M., Ohya, H., Paterson, R., Hosaka, M., Kim, J.-J., & McFadzean, S. (1997). Properties of new inorganic membranes prepared by metal alkoxide methods Part II: New inorganic-organic anion-exchange membranes prepared by the modified metal alkoxide methods with silane coupling agents. Journal of Membrane Science, 126(1), 161-169. doi:10.1016/s0376-7388(96)00289-x | es_ES |
dc.description.references | Ohya, H., Masaoka, K., Aihara, M., & Negishi, Y. (1998). Properties of new inorganic membranes prepared by metal alkoxide methods. Part III: New inorganic lithium permselective ion exchange membrane. Journal of Membrane Science, 146(1), 9-13. doi:10.1016/s0376-7388(98)00084-2 | es_ES |
dc.description.references | Wu, C., Xu, T., & Yang, W. (2003). A new inorganic–organic negatively charged membrane: membrane preparation and characterizations. Journal of Membrane Science, 224(1-2), 117-125. doi:10.1016/j.memsci.2003.07.004 | es_ES |
dc.description.references | Martí-Calatayud, M. C., García-Gabaldón, M., Pérez-Herranz, V., & Ortega, E. (2011). Determination of transport properties of Ni(II) through a Nafion cation-exchange membrane in chromic acid solutions. Journal of Membrane Science, 379(1-2), 449-458. doi:10.1016/j.memsci.2011.06.014 | es_ES |
dc.description.references | Długołęcki, P., Anet, B., Metz, S. J., Nijmeijer, K., & Wessling, M. (2010). Transport limitations in ion exchange membranes at low salt concentrations. Journal of Membrane Science, 346(1), 163-171. doi:10.1016/j.memsci.2009.09.033 | es_ES |
dc.description.references | Balster, J., Yildirim, M. H., Stamatialis, D. F., Ibanez, R., Lammertink, R. G. H., Jordan, V., & Wessling, M. (2007). Morphology and Microtopology of Cation-Exchange Polymers and the Origin of the Overlimiting Current. The Journal of Physical Chemistry B, 111(9), 2152-2165. doi:10.1021/jp068474t | es_ES |
dc.description.references | Taky, M., Pourcelly, G., Lebon, F., & Gavach, C. (1992). Polarization phenomena at the interfaces between an electrolyte solution and an ion exchange membrane. Journal of Electroanalytical Chemistry, 336(1-2), 171-194. doi:10.1016/0022-0728(92)80270-e | es_ES |
dc.description.references | Clearfield, A. (1988). Role of ion exchange in solid-state chemistry. Chemical Reviews, 88(1), 125-148. doi:10.1021/cr00083a007 | es_ES |
dc.description.references | Barragán, V. M., & Bauzá, C. R. (2002). Current–Voltage Curves for a Cation-Exchange Membrane in Methanol–Water Electrolyte Solutions. Journal of Colloid and Interface Science, 247(1), 138-148. doi:10.1006/jcis.2001.8065 | es_ES |
dc.description.references | Tanaka, Y. (2003). Concentration polarization in ion-exchange membrane electrodialysis—the events arising in a flowing solution in a desalting cell. Journal of Membrane Science, 216(1-2), 149-164. doi:10.1016/s0376-7388(03)00067-x | es_ES |
dc.description.references | Shapiro, V., Freger, V., Linder, C., & Oren, Y. (2008). Transport Properties of Highly Ordered Heterogeneous Ion-Exchange Membranes. The Journal of Physical Chemistry B, 112(31), 9389-9399. doi:10.1021/jp711169q | es_ES |
dc.description.references | Choi, J.-H., Lee, H.-J., & Moon, S.-H. (2001). Effects of Electrolytes on the Transport Phenomena in a Cation-Exchange Membrane. Journal of Colloid and Interface Science, 238(1), 188-195. doi:10.1006/jcis.2001.7510 | es_ES |
dc.description.references | Kumar, M., Tripathi, B. P., & Shahi, V. K. (2009). Ionic transport phenomenon across sol–gel derived organic–inorganic composite mono-valent cation selective membranes. Journal of Membrane Science, 340(1-2), 52-61. doi:10.1016/j.memsci.2009.05.010 | es_ES |