- -

"Ab initio" synthesis of zeolites for preestablished catalytic reactions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

"Ab initio" synthesis of zeolites for preestablished catalytic reactions

Show full item record

Gallego-Sánchez, EM.; Portilla Ovejero, MT.; Paris-Carrizo, CG.; Leon Escamilla, EA.; Boronat Zaragoza, M.; Moliner Marin, M.; Corma Canós, A. (2017). "Ab initio" synthesis of zeolites for preestablished catalytic reactions. Science. 355(6329):1051-1054. https://doi.org/10.1126/science.aal0121

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105508

Files in this item

Item Metadata

Title: "Ab initio" synthesis of zeolites for preestablished catalytic reactions
Author: Gallego-Sánchez, Eva María Portilla Ovejero, Mª Teresa Paris-Carrizo, Cecilia Gertrudis Leon Escamilla, Efigenio Alejandro Boronat Zaragoza, Mercedes Moliner Marin, Manuel Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
[EN] Unlike homogeneous catalysts that are often designed for particular reactions, zeolites are heterogeneous catalysts that are explored and optimized in a heuristic fashion. We present a methodol. for synthesizing ...[+]
Subjects: Zeolites , Catalytic reactions
Copyrigths: Reserva de todos los derechos
Science. (issn: 0036-8075 )
DOI: 10.1126/science.aal0121
American Association for the Advancement of Science (AAAS)
Publisher version: https://doi.org/10.1126/science.aal0121
Project ID:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/SynCatMatch/
This work has been supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the "Severo Ochoa Program" (grant SEV 2012-0267). The ...[+]
Type: Artículo


Vermeiren, W., & Gilson, J.-P. (2009). Impact of Zeolites on the Petroleum and Petrochemical Industry. Topics in Catalysis, 52(9), 1131-1161. doi:10.1007/s11244-009-9271-8

Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084

De Vos, D. E., & Jacobs, P. A. (2005). Zeolite effects in liquid phase organic transformations. Microporous and Mesoporous Materials, 82(3), 293-304. doi:10.1016/j.micromeso.2005.01.038 [+]
Vermeiren, W., & Gilson, J.-P. (2009). Impact of Zeolites on the Petroleum and Petrochemical Industry. Topics in Catalysis, 52(9), 1131-1161. doi:10.1007/s11244-009-9271-8

Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084

De Vos, D. E., & Jacobs, P. A. (2005). Zeolite effects in liquid phase organic transformations. Microporous and Mesoporous Materials, 82(3), 293-304. doi:10.1016/j.micromeso.2005.01.038

Jacobs, P. A., Dusselier, M., & Sels, B. F. (2014). Will Zeolite-Based Catalysis be as Relevant in Future Biorefineries as in Crude Oil Refineries? Angewandte Chemie International Edition, 53(33), 8621-8626. doi:10.1002/anie.201400922

Dapsens, P. Y., Mondelli, C., & Pérez-Ramírez, J. (2012). Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned. ACS Catalysis, 2(7), 1487-1499. doi:10.1021/cs300124m

Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u

Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713

Schmidt, J. E., Deem, M. W., & Davis, M. E. (2014). Synthesis of a Specified, Silica Molecular Sieve by Using Computationally Predicted Organic Structure-Directing Agents. Angewandte Chemie International Edition, 53(32), 8372-8374. doi:10.1002/anie.201404076

Eliášová, P., Opanasenko, M., Wheatley, P. S., Shamzhy, M., Mazur, M., Nachtigall, P., … Čejka, J. (2015). The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 44(20), 7177-7206. doi:10.1039/c5cs00045a

Bhan, A., Allian, A. D., Sunley, G. J., Law, D. J., & Iglesia, E. (2007). Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls. Journal of the American Chemical Society, 129(16), 4919-4924. doi:10.1021/ja070094d

Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m

Heilmann, J., & Maier, W. F. (1994). Selective Catalysis on Silicon Dioxide with Substrate-Specific Cavities. Angewandte Chemie International Edition in English, 33(4), 471-473. doi:10.1002/anie.199404711

Wulff, G., Heide, B., & Helfmeier, G. (1986). Enzyme-analog built polymers. 20. Molecular recognition through the exact placement of functional groups on rigid matrixes via a template approach. Journal of the American Chemical Society, 108(5), 1089-1091. doi:10.1021/ja00265a045

Ahmad, W. R., & Davis, M. E. (1996). Transesterification on "imprinted" silica. Catalysis Letters, 40(1-2), 109-114. doi:10.1007/bf00807466

Katz, A., & Davis, M. E. (2000). Molecular imprinting of bulk, microporous silica. Nature, 403(6767), 286-289. doi:10.1038/35002032

Lofgreen, J. E., & Ozin, G. A. (2014). Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica. Chem. Soc. Rev., 43(3), 911-933. doi:10.1039/c3cs60276a

Tsai, T. (1999). Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts. Applied Catalysis A: General, 181(2), 355-398. doi:10.1016/s0926-860x(98)00396-2

Čejka, J., & Wichterlová, B. (2002). ACID-CATALYZED SYNTHESIS OF MONO- AND DIALKYL BENZENES OVER ZEOLITES: ACTIVE SITES, ZEOLITE TOPOLOGY, AND REACTION MECHANISMS. Catalysis Reviews, 44(3), 375-421. doi:10.1081/cr-120005741

Xiong, Y., Rodewald, P. G., & Chang, C. D. (1995). On the Mechanism of Toluene Disproportionation in a Zeolite Environment. Journal of the American Chemical Society, 117(37), 9427-9431. doi:10.1021/ja00142a007

Dorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206o

X. Xiao, J. Butler, C. Comeaux, K. K., U.S. Patent 20,060,211,902 (2006).

J. R. Butler, X. Xiao, R. Hall, U.S. Patent 20,080,319,243 (2008).

Moreau, F., Bernard, S., Gnep, N. ., Lacombe, S., Merlen, E., & Guisnet, M. (2001). Ethylbenzene Isomerization on Bifunctional Platinum Alumina–Mordenite Catalysts. Journal of Catalysis, 202(2), 402-412. doi:10.1006/jcat.2001.3294

FERNANDES, L., MONTEIRO, J., SOUSAAGUIAR, E., MARTINEZ, A., & CORMA, A. (1998). Ethylbenzene hydroisomerization over bifunctional zeolite based catalysts: The influence of framework and extraframework composition and zeolite structure. Journal of Catalysis, 177(2), 363-377. doi:10.1006/jcat.1998.2111

PINES, H., & GREENLEE, T. W. (1961). Alumina: Catalyst and Support. VI.1Aromatization of 1,1-Dimethylcyclohexane, Methylcycloheptane, and Related Hydrocarbons over Platinum-Alumina Catalysts2,2a. The Journal of Organic Chemistry, 26(4), 1052-1057. doi:10.1021/jo01063a020

Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6

Ikeda, T., Kayamori, S., & Mizukami, F. (2009). Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. Journal of Materials Chemistry, 19(31), 5518. doi:10.1039/b905415d

Millini, R., Carluccio, L. C., Carati, A., Bellussi, G., Perego, C., Cruciani, G., & Zanardi, S. (2004). ERS-12: A new layered tetramethylammonium silicate composed by ferrierite layers. Microporous and Mesoporous Materials, 74(1-3), 59-71. doi:10.1016/j.micromeso.2004.06.007

Burton, A., Accardi, R. J., Lobo, R. F., Falcioni, M., & Deem, M. W. (2000). MCM-47:  A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chemistry of Materials, 12(10), 2936-2942. doi:10.1021/cm000243q

Dorset, D. L., & Kennedy, G. J. (2004). Crystal Structure of MCM-65:  An Alternative Linkage of Ferrierite Layers. The Journal of Physical Chemistry B, 108(39), 15216-15222. doi:10.1021/jp040305q

Knight, L. M., Miller, M. A., Koster, S. C., Gatter, M. G., Benin, A. I., Willis, R. R., … Broach, R. W. (2007). UZM-13, UZM-17, UZM-19 and UZM-25: synthesis and structure of new layered precursors and a zeolite discovered via combinatorial chemistry techniques. Studies in Surface Science and Catalysis, 338-346. doi:10.1016/s0167-2991(07)80858-5

Ikeda, T., Kayamori, S., Oumi, Y., & Mizukami, F. (2010). Structure Analysis of Si-Atom Pillared Lamellar Silicates Having Micropore Structure by Powder X-ray Diffraction. The Journal of Physical Chemistry C, 114(8), 3466-3476. doi:10.1021/jp912026n

Ruan, J., Wu, P., Slater, B., Zhao, Z., Wu, L., & Terasaki, O. (2009). Structural Characterization of Interlayer Expanded Zeolite Prepared From Ferrierite Lamellar Precursor. Chemistry of Materials, 21(13), 2904-2911. doi:10.1021/cm900645c

Röbschläger, K.-H., & Christoffel, E. G. (1979). Reaction Mechanism of Ethylbenzene Isomerization. Industrial & Engineering Chemistry Product Research and Development, 18(4), 347-352. doi:10.1021/i360072a023

Q. A. Acton, Ed. Advances in Adamantane Research and Application (ScholarlyEditions, 2013).

Von R. Schleyer, P. (1957). A SIMPLE PREPARATION OF ADAMANTANE. Journal of the American Chemical Society, 79(12), 3292-3292. doi:10.1021/ja01569a086

Engler, E. M., Farcasiu, M., Sevin, A., Cense, J. M., & Schleyer, P. V. R. (1973). Mechanism of adamantane rearrangements. Journal of the American Chemical Society, 95(17), 5769-5771. doi:10.1021/ja00798a059

Lau, G. C., & Maier, W. F. (1987). Polycyclic hydrocarbon rearrangements in zeolites. A mechanistic study. Langmuir, 3(2), 164-173. doi:10.1021/la00074a004

Honna, K., Sugimoto, M., Shimizu, N., & Kurisaki, K. (1986). CATALYTIC REARRANGEMENT OF TETRAHYDRODICYCLOPENTADIENE TO ADAMANTANE OVER Y-ZEOLITE. Chemistry Letters, 15(3), 315-318. doi:10.1246/cl.1986.315

Gao, Z., & Yang, X.-B. (2010). Synthesis of adamantane on zeolite catalysts. Chinese Journal of Chemistry, 12(1), 52-57. doi:10.1002/cjoc.19940120107

Navrátilová, M., & Sporka, K. (2000). Synthesis of adamantane on commercially available zeolitic catalysts. Applied Catalysis A: General, 203(1), 127-132. doi:10.1016/s0926-860x(00)00477-4

Von R. Schleyer, P., & Donaldson, M. M. (1960). The Relative Stability of Bridged Hydrocarbons. II. endo- and exo-Trimethylenenorbornane. The Formation of Adamantane1,2. Journal of the American Chemical Society, 82(17), 4645-4651. doi:10.1021/ja01502a050

S. I. Zones, U.S. Patent 4,544,538 (1985).

M. J. Diaz, M. A. Camblor, C. Corell, A. Corma, U.S. Patent 6,077,498 (2000).

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

Luo, H. Y., Michaelis, V. K., Hodges, S., Griffin, R. G., & Román-Leshkov, Y. (2015). One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science, 6(11), 6320-6324. doi:10.1039/c5sc01912e

Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C., & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie International Edition, 54(46), 13724-13728. doi:10.1002/anie.201506822

E. Mishani et al.,U.S. Patent 20,110,293,519 (2011).

Marcoux, D., & Charette, A. B. (2008). Palladium-Catalyzed Synthesis of Functionalized Tetraarylphosphonium Salts. The Journal of Organic Chemistry, 73(2), 590-593. doi:10.1021/jo702355c

M. K. Rubin, P. Chu, U.S. Patent 4,954,325 (1990).

A. S. Fung, S. L. Lawton, W. J. Roth, U.S. Patent 5,362,697 (1994).

Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145

Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671-6687. doi:10.1103/physrevb.46.6671

Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953

Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344

Narkhede, V. V., & Gies, H. (2009). Crystal Structure of MCM-22 (MWW) and Its Delaminated Zeolite ITQ-2 from High-Resolution Powder X-Ray Diffraction Data: An Analysis Using Rietveld Technique and Atomic Pair Distribution Function. Chemistry of Materials, 21(18), 4339-4346. doi:10.1021/cm901883e




This item appears in the following Collection(s)

Show full item record