- -

"Ab initio" synthesis of zeolites for preestablished catalytic reactions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

"Ab initio" synthesis of zeolites for preestablished catalytic reactions

Show simple item record

Files in this item

dc.contributor.author Gallego-Sánchez, Eva María es_ES
dc.contributor.author Portilla Ovejero, Mª Teresa es_ES
dc.contributor.author Paris-Carrizo, Cecilia Gertrudis es_ES
dc.contributor.author Leon Escamilla, Efigenio Alejandro es_ES
dc.contributor.author Boronat Zaragoza, Mercedes es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2018-07-09T04:26:30Z
dc.date.available 2018-07-09T04:26:30Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0036-8075 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105508
dc.description.abstract [EN] Unlike homogeneous catalysts that are often designed for particular reactions, zeolites are heterogeneous catalysts that are explored and optimized in a heuristic fashion. We present a methodol. for synthesizing active and selective zeolites by using org. structure-¿directing agents that mimic the transition state (TS) of preestablished reactions to be catalyzed. In these zeolites, the pores and cavities could be generated approaching a mol.-¿recognition pattern. For disproportionation of toluene and isomerization of ethylbenzene into xylenes, the TSs are larger than the reaction products. Zeolite ITQ-¿27 showed high disproportionation activity, and ITQ-¿64 showed high selectivity for the desired para and ortho isomers. For the case of a product and TS of similar size, we synthesized a catalyst, MIT-¿1, for the isomerization of endo-¿dicyclopentane into adamantane. es_ES
dc.description.sponsorship This work has been supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the "Severo Ochoa Program" (grant SEV 2012-0267). The Electron Microscopy Service of the Universitat Politecnica de Valencia (UPV) is acknowledged for help with sample characterization. The Red Espanola de Supercomputacion (RES) and Centre de Calcul de la Universitat de Valencia are gratefully acknowledged for computational facilities and technical assistance. E.M.G. acknowledges "La Caixa-Severo Ochoa" International Ph.D. Fellowship (call 2015). We thank I. Millet for technical assistance and V. J. Margarit and A. Cantin for helpful discussions. es_ES
dc.language Inglés es_ES
dc.publisher American Association for the Advancement of Science (AAAS) es_ES
dc.relation ERC-AdG-2014-671093 es_ES
dc.relation MINECO/SEV-2012-0267 es_ES
dc.relation.ispartof Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject "Ab initio" synthesis of zeolites for preestablished catalytic reactions es_ES
dc.subject Electron Microscopy Service of the UPV
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title "Ab initio" synthesis of zeolites for preestablished catalytic reactions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1126/science.aal0121 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Gallego-Sánchez, EM.; Portilla Ovejero, MT.; Paris-Carrizo, CG.; Leon Escamilla, EA.; Boronat Zaragoza, M.; Moliner Marin, M.; Corma Canós, A. (2017). "Ab initio" synthesis of zeolites for preestablished catalytic reactions. Science. 355(6329):1051-1054. doi:10.1126/science.aal0121 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1126/science.aal0121 es_ES
dc.description.upvformatpinicio 1051 es_ES
dc.description.upvformatpfin 1054 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 355 es_ES
dc.description.issue 6329 es_ES
dc.relation.pasarela 346464 es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.relation.references Vermeiren, W., & Gilson, J.-P. (2009). Impact of Zeolites on the Petroleum and Petrochemical Industry. Topics in Catalysis, 52(9), 1131-1161. doi:10.1007/s11244-009-9271-8 es_ES
dc.relation.references Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084 es_ES
dc.relation.references De Vos, D. E., & Jacobs, P. A. (2005). Zeolite effects in liquid phase organic transformations. Microporous and Mesoporous Materials, 82(3), 293-304. doi:10.1016/j.micromeso.2005.01.038 es_ES
dc.relation.references Jacobs, P. A., Dusselier, M., & Sels, B. F. (2014). Will Zeolite-Based Catalysis be as Relevant in Future Biorefineries as in Crude Oil Refineries? Angewandte Chemie International Edition, 53(33), 8621-8626. doi:10.1002/anie.201400922 es_ES
dc.relation.references Dapsens, P. Y., Mondelli, C., & Pérez-Ramírez, J. (2012). Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned. ACS Catalysis, 2(7), 1487-1499. doi:10.1021/cs300124m es_ES
dc.relation.references Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u es_ES
dc.relation.references Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713 es_ES
dc.relation.references Schmidt, J. E., Deem, M. W., & Davis, M. E. (2014). Synthesis of a Specified, Silica Molecular Sieve by Using Computationally Predicted Organic Structure-Directing Agents. Angewandte Chemie International Edition, 53(32), 8372-8374. doi:10.1002/anie.201404076 es_ES
dc.relation.references Eliášová, P., Opanasenko, M., Wheatley, P. S., Shamzhy, M., Mazur, M., Nachtigall, P., … Čejka, J. (2015). The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 44(20), 7177-7206. doi:10.1039/c5cs00045a es_ES
dc.relation.references Bhan, A., Allian, A. D., Sunley, G. J., Law, D. J., & Iglesia, E. (2007). Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls. Journal of the American Chemical Society, 129(16), 4919-4924. doi:10.1021/ja070094d es_ES
dc.relation.references Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m es_ES
dc.relation.references Heilmann, J., & Maier, W. F. (1994). Selective Catalysis on Silicon Dioxide with Substrate-Specific Cavities. Angewandte Chemie International Edition in English, 33(4), 471-473. doi:10.1002/anie.199404711 es_ES
dc.relation.references Wulff, G., Heide, B., & Helfmeier, G. (1986). Enzyme-analog built polymers. 20. Molecular recognition through the exact placement of functional groups on rigid matrixes via a template approach. Journal of the American Chemical Society, 108(5), 1089-1091. doi:10.1021/ja00265a045 es_ES
dc.relation.references Ahmad, W. R., & Davis, M. E. (1996). Transesterification on ?imprinted? silica. Catalysis Letters, 40(1-2), 109-114. doi:10.1007/bf00807466 es_ES
dc.relation.references Katz, A., & Davis, M. E. (2000). Molecular imprinting of bulk, microporous silica. Nature, 403(6767), 286-289. doi:10.1038/35002032 es_ES
dc.relation.references Lofgreen, J. E., & Ozin, G. A. (2014). Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica. Chem. Soc. Rev., 43(3), 911-933. doi:10.1039/c3cs60276a es_ES
dc.relation.references Tsai, T. (1999). Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts. Applied Catalysis A: General, 181(2), 355-398. doi:10.1016/s0926-860x(98)00396-2 es_ES
dc.relation.references Čejka, J., & Wichterlová, B. (2002). ACID-CATALYZED SYNTHESIS OF MONO- AND DIALKYL BENZENES OVER ZEOLITES: ACTIVE SITES, ZEOLITE TOPOLOGY, AND REACTION MECHANISMS. Catalysis Reviews, 44(3), 375-421. doi:10.1081/cr-120005741 es_ES
dc.relation.references Xiong, Y., Rodewald, P. G., & Chang, C. D. (1995). On the Mechanism of Toluene Disproportionation in a Zeolite Environment. Journal of the American Chemical Society, 117(37), 9427-9431. doi:10.1021/ja00142a007 es_ES
dc.relation.references Dorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206o es_ES
dc.relation.references X. Xiao, J. Butler, C. Comeaux, K. K., U.S. Patent 20,060,211,902 (2006). es_ES
dc.relation.references J. R. Butler, X. Xiao, R. Hall, U.S. Patent 20,080,319,243 (2008). es_ES
dc.relation.references Moreau, F., Bernard, S., Gnep, N. ., Lacombe, S., Merlen, E., & Guisnet, M. (2001). Ethylbenzene Isomerization on Bifunctional Platinum Alumina–Mordenite Catalysts. Journal of Catalysis, 202(2), 402-412. doi:10.1006/jcat.2001.3294 es_ES
dc.relation.references FERNANDES, L., MONTEIRO, J., SOUSAAGUIAR, E., MARTINEZ, A., & CORMA, A. (1998). Ethylbenzene hydroisomerization over bifunctional zeolite based catalysts: The influence of framework and extraframework composition and zeolite structure. Journal of Catalysis, 177(2), 363-377. doi:10.1006/jcat.1998.2111 es_ES
dc.relation.references PINES, H., & GREENLEE, T. W. (1961). Alumina: Catalyst and Support. VI.1Aromatization of 1,1-Dimethylcyclohexane, Methylcycloheptane, and Related Hydrocarbons over Platinum-Alumina Catalysts2,2a. The Journal of Organic Chemistry, 26(4), 1052-1057. doi:10.1021/jo01063a020 es_ES
dc.relation.references Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6 es_ES
dc.relation.references Ikeda, T., Kayamori, S., & Mizukami, F. (2009). Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. Journal of Materials Chemistry, 19(31), 5518. doi:10.1039/b905415d es_ES
dc.relation.references Millini, R., Carluccio, L. C., Carati, A., Bellussi, G., Perego, C., Cruciani, G., & Zanardi, S. (2004). ERS-12: A new layered tetramethylammonium silicate composed by ferrierite layers. Microporous and Mesoporous Materials, 74(1-3), 59-71. doi:10.1016/j.micromeso.2004.06.007 es_ES
dc.relation.references Burton, A., Accardi, R. J., Lobo, R. F., Falcioni, M., & Deem, M. W. (2000). MCM-47:  A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chemistry of Materials, 12(10), 2936-2942. doi:10.1021/cm000243q es_ES
dc.relation.references Dorset, D. L., & Kennedy, G. J. (2004). Crystal Structure of MCM-65:  An Alternative Linkage of Ferrierite Layers. The Journal of Physical Chemistry B, 108(39), 15216-15222. doi:10.1021/jp040305q es_ES
dc.relation.references Knight, L. M., Miller, M. A., Koster, S. C., Gatter, M. G., Benin, A. I., Willis, R. R., … Broach, R. W. (2007). UZM-13, UZM-17, UZM-19 and UZM-25: synthesis and structure of new layered precursors and a zeolite discovered via combinatorial chemistry techniques. Studies in Surface Science and Catalysis, 338-346. doi:10.1016/s0167-2991(07)80858-5 es_ES
dc.relation.references Ikeda, T., Kayamori, S., Oumi, Y., & Mizukami, F. (2010). Structure Analysis of Si-Atom Pillared Lamellar Silicates Having Micropore Structure by Powder X-ray Diffraction. The Journal of Physical Chemistry C, 114(8), 3466-3476. doi:10.1021/jp912026n es_ES
dc.relation.references Ruan, J., Wu, P., Slater, B., Zhao, Z., Wu, L., & Terasaki, O. (2009). Structural Characterization of Interlayer Expanded Zeolite Prepared From Ferrierite Lamellar Precursor. Chemistry of Materials, 21(13), 2904-2911. doi:10.1021/cm900645c es_ES
dc.relation.references Röbschläger, K.-H., & Christoffel, E. G. (1979). Reaction Mechanism of Ethylbenzene Isomerization. Industrial & Engineering Chemistry Product Research and Development, 18(4), 347-352. doi:10.1021/i360072a023 es_ES
dc.relation.references Q. A. Acton, Ed. Advances in Adamantane Research and Application (ScholarlyEditions, 2013). es_ES
dc.relation.references Von R. Schleyer, P. (1957). A SIMPLE PREPARATION OF ADAMANTANE. Journal of the American Chemical Society, 79(12), 3292-3292. doi:10.1021/ja01569a086 es_ES
dc.relation.references Engler, E. M., Farcasiu, M., Sevin, A., Cense, J. M., & Schleyer, P. V. R. (1973). Mechanism of adamantane rearrangements. Journal of the American Chemical Society, 95(17), 5769-5771. doi:10.1021/ja00798a059 es_ES
dc.relation.references Lau, G. C., & Maier, W. F. (1987). Polycyclic hydrocarbon rearrangements in zeolites. A mechanistic study. Langmuir, 3(2), 164-173. doi:10.1021/la00074a004 es_ES
dc.relation.references Honna, K., Sugimoto, M., Shimizu, N., & Kurisaki, K. (1986). CATALYTIC REARRANGEMENT OF TETRAHYDRODICYCLOPENTADIENE TO ADAMANTANE OVER Y-ZEOLITE. Chemistry Letters, 15(3), 315-318. doi:10.1246/cl.1986.315 es_ES
dc.relation.references Gao, Z., & Yang, X.-B. (2010). Synthesis of adamantane on zeolite catalysts. Chinese Journal of Chemistry, 12(1), 52-57. doi:10.1002/cjoc.19940120107 es_ES
dc.relation.references Navrátilová, M., & Sporka, K. (2000). Synthesis of adamantane on commercially available zeolitic catalysts. Applied Catalysis A: General, 203(1), 127-132. doi:10.1016/s0926-860x(00)00477-4 es_ES
dc.relation.references Von R. Schleyer, P., & Donaldson, M. M. (1960). The Relative Stability of Bridged Hydrocarbons. II. endo- and exo-Trimethylenenorbornane. The Formation of Adamantane1,2. Journal of the American Chemical Society, 82(17), 4645-4651. doi:10.1021/ja01502a050 es_ES
dc.relation.references S. I. Zones, U.S. Patent 4,544,538 (1985). es_ES
dc.relation.references M. J. Diaz, M. A. Camblor, C. Corell, A. Corma, U.S. Patent 6,077,498 (2000). es_ES
dc.relation.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.relation.references Luo, H. Y., Michaelis, V. K., Hodges, S., Griffin, R. G., & Román-Leshkov, Y. (2015). One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science, 6(11), 6320-6324. doi:10.1039/c5sc01912e es_ES
dc.relation.references Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C., & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie International Edition, 54(46), 13724-13728. doi:10.1002/anie.201506822 es_ES
dc.relation.references E. Mishani et al.,U.S. Patent 20,110,293,519 (2011). es_ES
dc.relation.references Marcoux, D., & Charette, A. B. (2008). Palladium-Catalyzed Synthesis of Functionalized Tetraarylphosphonium Salts. The Journal of Organic Chemistry, 73(2), 590-593. doi:10.1021/jo702355c es_ES
dc.relation.references M. K. Rubin, P. Chu, U.S. Patent 4,954,325 (1990). es_ES
dc.relation.references A. S. Fung, S. L. Lawton, W. J. Roth, U.S. Patent 5,362,697 (1994). es_ES
dc.relation.references Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 es_ES
dc.relation.references Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671-6687. doi:10.1103/physrevb.46.6671 es_ES
dc.relation.references Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244 es_ES
dc.relation.references Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 es_ES
dc.relation.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES
dc.relation.references Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344 es_ES
dc.relation.references Narkhede, V. V., & Gies, H. (2009). Crystal Structure of MCM-22 (MWW) and Its Delaminated Zeolite ITQ-2 from High-Resolution Powder X-Ray Diffraction Data: An Analysis Using Rietveld Technique and Atomic Pair Distribution Function. Chemistry of Materials, 21(18), 4339-4346. doi:10.1021/cm901883e es_ES


This item appears in the following Collection(s)

Show simple item record