Mostrar el registro sencillo del ítem
dc.contributor.author | Gallego-Sánchez, Eva María | es_ES |
dc.contributor.author | Portilla Ovejero, Mª Teresa | es_ES |
dc.contributor.author | Paris-Carrizo, Cecilia Gertrudis | es_ES |
dc.contributor.author | Leon Escamilla, Efigenio Alejandro | es_ES |
dc.contributor.author | Boronat Zaragoza, Mercedes | es_ES |
dc.contributor.author | Moliner Marin, Manuel | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.date.accessioned | 2018-07-09T04:26:30Z | |
dc.date.available | 2018-07-09T04:26:30Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 0036-8075 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/105508 | |
dc.description.abstract | [EN] Unlike homogeneous catalysts that are often designed for particular reactions, zeolites are heterogeneous catalysts that are explored and optimized in a heuristic fashion. We present a methodol. for synthesizing active and selective zeolites by using org. structure-¿directing agents that mimic the transition state (TS) of preestablished reactions to be catalyzed. In these zeolites, the pores and cavities could be generated approaching a mol.-¿recognition pattern. For disproportionation of toluene and isomerization of ethylbenzene into xylenes, the TSs are larger than the reaction products. Zeolite ITQ-¿27 showed high disproportionation activity, and ITQ-¿64 showed high selectivity for the desired para and ortho isomers. For the case of a product and TS of similar size, we synthesized a catalyst, MIT-¿1, for the isomerization of endo-¿dicyclopentane into adamantane. | es_ES |
dc.description.sponsorship | This work has been supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the "Severo Ochoa Program" (grant SEV 2012-0267). The Electron Microscopy Service of the Universitat Politecnica de Valencia (UPV) is acknowledged for help with sample characterization. The Red Espanola de Supercomputacion (RES) and Centre de Calcul de la Universitat de Valencia are gratefully acknowledged for computational facilities and technical assistance. E.M.G. acknowledges "La Caixa-Severo Ochoa" International Ph.D. Fellowship (call 2015). We thank I. Millet for technical assistance and V. J. Margarit and A. Cantin for helpful discussions. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Association for the Advancement of Science (AAAS) | es_ES |
dc.relation.ispartof | Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Zeolites | es_ES |
dc.subject | Catalytic reactions | |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | "Ab initio" synthesis of zeolites for preestablished catalytic reactions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1126/science.aal0121 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/SynCatMatch/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Gallego-Sánchez, EM.; Portilla Ovejero, MT.; Paris-Carrizo, CG.; Leon Escamilla, EA.; Boronat Zaragoza, M.; Moliner Marin, M.; Corma Canós, A. (2017). "Ab initio" synthesis of zeolites for preestablished catalytic reactions. Science. 355(6329):1051-1054. https://doi.org/10.1126/science.aal0121 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1126/science.aal0121 | es_ES |
dc.description.upvformatpinicio | 1051 | es_ES |
dc.description.upvformatpfin | 1054 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 355 | es_ES |
dc.description.issue | 6329 | es_ES |
dc.relation.pasarela | S\346464 | es_ES |
dc.contributor.funder | European Research Council | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Vermeiren, W., & Gilson, J.-P. (2009). Impact of Zeolites on the Petroleum and Petrochemical Industry. Topics in Catalysis, 52(9), 1131-1161. doi:10.1007/s11244-009-9271-8 | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084 | es_ES |
dc.description.references | De Vos, D. E., & Jacobs, P. A. (2005). Zeolite effects in liquid phase organic transformations. Microporous and Mesoporous Materials, 82(3), 293-304. doi:10.1016/j.micromeso.2005.01.038 | es_ES |
dc.description.references | Jacobs, P. A., Dusselier, M., & Sels, B. F. (2014). Will Zeolite-Based Catalysis be as Relevant in Future Biorefineries as in Crude Oil Refineries? Angewandte Chemie International Edition, 53(33), 8621-8626. doi:10.1002/anie.201400922 | es_ES |
dc.description.references | Dapsens, P. Y., Mondelli, C., & Pérez-Ramírez, J. (2012). Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned. ACS Catalysis, 2(7), 1487-1499. doi:10.1021/cs300124m | es_ES |
dc.description.references | Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u | es_ES |
dc.description.references | Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713 | es_ES |
dc.description.references | Schmidt, J. E., Deem, M. W., & Davis, M. E. (2014). Synthesis of a Specified, Silica Molecular Sieve by Using Computationally Predicted Organic Structure-Directing Agents. Angewandte Chemie International Edition, 53(32), 8372-8374. doi:10.1002/anie.201404076 | es_ES |
dc.description.references | Eliášová, P., Opanasenko, M., Wheatley, P. S., Shamzhy, M., Mazur, M., Nachtigall, P., … Čejka, J. (2015). The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 44(20), 7177-7206. doi:10.1039/c5cs00045a | es_ES |
dc.description.references | Bhan, A., Allian, A. D., Sunley, G. J., Law, D. J., & Iglesia, E. (2007). Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls. Journal of the American Chemical Society, 129(16), 4919-4924. doi:10.1021/ja070094d | es_ES |
dc.description.references | Boronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607m | es_ES |
dc.description.references | Heilmann, J., & Maier, W. F. (1994). Selective Catalysis on Silicon Dioxide with Substrate-Specific Cavities. Angewandte Chemie International Edition in English, 33(4), 471-473. doi:10.1002/anie.199404711 | es_ES |
dc.description.references | Wulff, G., Heide, B., & Helfmeier, G. (1986). Enzyme-analog built polymers. 20. Molecular recognition through the exact placement of functional groups on rigid matrixes via a template approach. Journal of the American Chemical Society, 108(5), 1089-1091. doi:10.1021/ja00265a045 | es_ES |
dc.description.references | Ahmad, W. R., & Davis, M. E. (1996). Transesterification on "imprinted" silica. Catalysis Letters, 40(1-2), 109-114. doi:10.1007/bf00807466 | es_ES |
dc.description.references | Katz, A., & Davis, M. E. (2000). Molecular imprinting of bulk, microporous silica. Nature, 403(6767), 286-289. doi:10.1038/35002032 | es_ES |
dc.description.references | Lofgreen, J. E., & Ozin, G. A. (2014). Controlling morphology and porosity to improve performance of molecularly imprinted sol–gel silica. Chem. Soc. Rev., 43(3), 911-933. doi:10.1039/c3cs60276a | es_ES |
dc.description.references | Tsai, T. (1999). Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts. Applied Catalysis A: General, 181(2), 355-398. doi:10.1016/s0926-860x(98)00396-2 | es_ES |
dc.description.references | Čejka, J., & Wichterlová, B. (2002). ACID-CATALYZED SYNTHESIS OF MONO- AND DIALKYL BENZENES OVER ZEOLITES: ACTIVE SITES, ZEOLITE TOPOLOGY, AND REACTION MECHANISMS. Catalysis Reviews, 44(3), 375-421. doi:10.1081/cr-120005741 | es_ES |
dc.description.references | Xiong, Y., Rodewald, P. G., & Chang, C. D. (1995). On the Mechanism of Toluene Disproportionation in a Zeolite Environment. Journal of the American Chemical Society, 117(37), 9427-9431. doi:10.1021/ja00142a007 | es_ES |
dc.description.references | Dorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents: Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206o | es_ES |
dc.description.references | X. Xiao, J. Butler, C. Comeaux, K. K., U.S. Patent 20,060,211,902 (2006). | es_ES |
dc.description.references | J. R. Butler, X. Xiao, R. Hall, U.S. Patent 20,080,319,243 (2008). | es_ES |
dc.description.references | Moreau, F., Bernard, S., Gnep, N. ., Lacombe, S., Merlen, E., & Guisnet, M. (2001). Ethylbenzene Isomerization on Bifunctional Platinum Alumina–Mordenite Catalysts. Journal of Catalysis, 202(2), 402-412. doi:10.1006/jcat.2001.3294 | es_ES |
dc.description.references | FERNANDES, L., MONTEIRO, J., SOUSAAGUIAR, E., MARTINEZ, A., & CORMA, A. (1998). Ethylbenzene hydroisomerization over bifunctional zeolite based catalysts: The influence of framework and extraframework composition and zeolite structure. Journal of Catalysis, 177(2), 363-377. doi:10.1006/jcat.1998.2111 | es_ES |
dc.description.references | PINES, H., & GREENLEE, T. W. (1961). Alumina: Catalyst and Support. VI.1Aromatization of 1,1-Dimethylcyclohexane, Methylcycloheptane, and Related Hydrocarbons over Platinum-Alumina Catalysts2,2a. The Journal of Organic Chemistry, 26(4), 1052-1057. doi:10.1021/jo01063a020 | es_ES |
dc.description.references | Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6 | es_ES |
dc.description.references | Ikeda, T., Kayamori, S., & Mizukami, F. (2009). Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. Journal of Materials Chemistry, 19(31), 5518. doi:10.1039/b905415d | es_ES |
dc.description.references | Millini, R., Carluccio, L. C., Carati, A., Bellussi, G., Perego, C., Cruciani, G., & Zanardi, S. (2004). ERS-12: A new layered tetramethylammonium silicate composed by ferrierite layers. Microporous and Mesoporous Materials, 74(1-3), 59-71. doi:10.1016/j.micromeso.2004.06.007 | es_ES |
dc.description.references | Burton, A., Accardi, R. J., Lobo, R. F., Falcioni, M., & Deem, M. W. (2000). MCM-47: A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chemistry of Materials, 12(10), 2936-2942. doi:10.1021/cm000243q | es_ES |
dc.description.references | Dorset, D. L., & Kennedy, G. J. (2004). Crystal Structure of MCM-65: An Alternative Linkage of Ferrierite Layers. The Journal of Physical Chemistry B, 108(39), 15216-15222. doi:10.1021/jp040305q | es_ES |
dc.description.references | Knight, L. M., Miller, M. A., Koster, S. C., Gatter, M. G., Benin, A. I., Willis, R. R., … Broach, R. W. (2007). UZM-13, UZM-17, UZM-19 and UZM-25: synthesis and structure of new layered precursors and a zeolite discovered via combinatorial chemistry techniques. Studies in Surface Science and Catalysis, 338-346. doi:10.1016/s0167-2991(07)80858-5 | es_ES |
dc.description.references | Ikeda, T., Kayamori, S., Oumi, Y., & Mizukami, F. (2010). Structure Analysis of Si-Atom Pillared Lamellar Silicates Having Micropore Structure by Powder X-ray Diffraction. The Journal of Physical Chemistry C, 114(8), 3466-3476. doi:10.1021/jp912026n | es_ES |
dc.description.references | Ruan, J., Wu, P., Slater, B., Zhao, Z., Wu, L., & Terasaki, O. (2009). Structural Characterization of Interlayer Expanded Zeolite Prepared From Ferrierite Lamellar Precursor. Chemistry of Materials, 21(13), 2904-2911. doi:10.1021/cm900645c | es_ES |
dc.description.references | Röbschläger, K.-H., & Christoffel, E. G. (1979). Reaction Mechanism of Ethylbenzene Isomerization. Industrial & Engineering Chemistry Product Research and Development, 18(4), 347-352. doi:10.1021/i360072a023 | es_ES |
dc.description.references | Q. A. Acton, Ed. Advances in Adamantane Research and Application (ScholarlyEditions, 2013). | es_ES |
dc.description.references | Von R. Schleyer, P. (1957). A SIMPLE PREPARATION OF ADAMANTANE. Journal of the American Chemical Society, 79(12), 3292-3292. doi:10.1021/ja01569a086 | es_ES |
dc.description.references | Engler, E. M., Farcasiu, M., Sevin, A., Cense, J. M., & Schleyer, P. V. R. (1973). Mechanism of adamantane rearrangements. Journal of the American Chemical Society, 95(17), 5769-5771. doi:10.1021/ja00798a059 | es_ES |
dc.description.references | Lau, G. C., & Maier, W. F. (1987). Polycyclic hydrocarbon rearrangements in zeolites. A mechanistic study. Langmuir, 3(2), 164-173. doi:10.1021/la00074a004 | es_ES |
dc.description.references | Honna, K., Sugimoto, M., Shimizu, N., & Kurisaki, K. (1986). CATALYTIC REARRANGEMENT OF TETRAHYDRODICYCLOPENTADIENE TO ADAMANTANE OVER Y-ZEOLITE. Chemistry Letters, 15(3), 315-318. doi:10.1246/cl.1986.315 | es_ES |
dc.description.references | Gao, Z., & Yang, X.-B. (2010). Synthesis of adamantane on zeolite catalysts. Chinese Journal of Chemistry, 12(1), 52-57. doi:10.1002/cjoc.19940120107 | es_ES |
dc.description.references | Navrátilová, M., & Sporka, K. (2000). Synthesis of adamantane on commercially available zeolitic catalysts. Applied Catalysis A: General, 203(1), 127-132. doi:10.1016/s0926-860x(00)00477-4 | es_ES |
dc.description.references | Von R. Schleyer, P., & Donaldson, M. M. (1960). The Relative Stability of Bridged Hydrocarbons. II. endo- and exo-Trimethylenenorbornane. The Formation of Adamantane1,2. Journal of the American Chemical Society, 82(17), 4645-4651. doi:10.1021/ja01502a050 | es_ES |
dc.description.references | S. I. Zones, U.S. Patent 4,544,538 (1985). | es_ES |
dc.description.references | M. J. Diaz, M. A. Camblor, C. Corell, A. Corma, U.S. Patent 6,077,498 (2000). | es_ES |
dc.description.references | Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 | es_ES |
dc.description.references | Luo, H. Y., Michaelis, V. K., Hodges, S., Griffin, R. G., & Román-Leshkov, Y. (2015). One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chemical Science, 6(11), 6320-6324. doi:10.1039/c5sc01912e | es_ES |
dc.description.references | Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C., & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie International Edition, 54(46), 13724-13728. doi:10.1002/anie.201506822 | es_ES |
dc.description.references | E. Mishani et al.,U.S. Patent 20,110,293,519 (2011). | es_ES |
dc.description.references | Marcoux, D., & Charette, A. B. (2008). Palladium-Catalyzed Synthesis of Functionalized Tetraarylphosphonium Salts. The Journal of Organic Chemistry, 73(2), 590-593. doi:10.1021/jo702355c | es_ES |
dc.description.references | M. K. Rubin, P. Chu, U.S. Patent 4,954,325 (1990). | es_ES |
dc.description.references | A. S. Fung, S. L. Lawton, W. J. Roth, U.S. Patent 5,362,697 (1994). | es_ES |
dc.description.references | Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 | es_ES |
dc.description.references | Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 46(11), 6671-6687. doi:10.1103/physrevb.46.6671 | es_ES |
dc.description.references | Perdew, J. P., & Wang, Y. (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 45(23), 13244-13249. doi:10.1103/physrevb.45.13244 | es_ES |
dc.description.references | Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 | es_ES |
dc.description.references | Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 | es_ES |
dc.description.references | Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344 | es_ES |
dc.description.references | Narkhede, V. V., & Gies, H. (2009). Crystal Structure of MCM-22 (MWW) and Its Delaminated Zeolite ITQ-2 from High-Resolution Powder X-Ray Diffraction Data: An Analysis Using Rietveld Technique and Atomic Pair Distribution Function. Chemistry of Materials, 21(18), 4339-4346. doi:10.1021/cm901883e | es_ES |