- -

Synthesis of borasiloxanes by oxidative hydrolysis of silanes and pinacolborane using Cu3(BTC)2 as a solid catalyst

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of borasiloxanes by oxidative hydrolysis of silanes and pinacolborane using Cu3(BTC)2 as a solid catalyst

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author Asiri, Abdullah M. es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2018-07-09T06:39:08Z
dc.date.available 2018-07-09T06:39:08Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1359-7345 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105528
dc.description.abstract [EN] A convenient method for the synthesis of borasiloxanes from silanes and pinacolboranes using Cu-3(BTC)(2) as a heterogeneous catalyst in acetonitrile at 70 degrees C is reported. This procedure is more convenient than Ru and Pd based homogeneous catalysts because it avoids the use of noble metals, easy handling of starting materials and the catalyst can be reused. es_ES
dc.description.sponsorship AD thanks the University Grants Commission (UGC), New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. AD also thanks the Department of Science and Technology, India, for the financial support through Extra Mural Research Funding (EMR/2016/006500). Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-1) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Communications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis of borasiloxanes by oxidative hydrolysis of silanes and pinacolborane using Cu3(BTC)2 as a solid catalyst es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7cc05221a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-09-16 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Dhakshinamoorthy, A.; Asiri, AM.; Concepción Heydorn, P.; García Gómez, H. (2017). Synthesis of borasiloxanes by oxidative hydrolysis of silanes and pinacolborane using Cu3(BTC)2 as a solid catalyst. Chemical Communications. 53(72):9998-10001. https://doi.org/10.1039/c7cc05221a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7cc05221a es_ES
dc.description.upvformatpinicio 9998 es_ES
dc.description.upvformatpfin 10001 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 53 es_ES
dc.description.issue 72 es_ES
dc.relation.pasarela S\357369 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Liu, W., Pink, M., & Lee, D. (2009). Conjugated Polymer Sensors Built on π-Extended Borasiloxane Cages. Journal of the American Chemical Society, 131(24), 8703-8707. doi:10.1021/ja902333p es_ES
dc.description.references Khelevina, O. G., & Malyasova, A. S. (2014). Cross-linking of borosiloxane oligomers and properties of materials with vulcanized borosiloxane coating. Russian Journal of Applied Chemistry, 87(4), 480-484. doi:10.1134/s10704272140400144 es_ES
dc.description.references Puneet, P., Vedarajan, R., & Matsumi, N. (2016). Alternating Poly(borosiloxane) for Solid State Ultrasensitivity Toward Fluoride Ions in Aqueous Media. ACS Sensors, 1(10), 1198-1202. doi:10.1021/acssensors.6b00346 es_ES
dc.description.references Han, Y.-K., Yoo, J., & Yim, T. (2016). Distinct Reaction Characteristics of Electrolyte Additives for High-Voltage Lithium-Ion Batteries: Tris(trimethylsilyl) Phosphite, Borate, and Phosphate. Electrochimica Acta, 215, 455-465. doi:10.1016/j.electacta.2016.08.131 es_ES
dc.description.references Makarova, E. A., Shimizu, S., Matsuda, A., Luk’yanets, E. A., & Kobayashi, N. (2008). meso-Aryl tribenzosubporphyrin—a totally substituted subporphyrin species. Chemical Communications, (18), 2109. doi:10.1039/b801712c es_ES
dc.description.references Neville, L. A., Spalding, T. R., & Ferguson, G. (2000). A Novel Borosilicate Cage Compound with an Incomplete B4Si4 Cube Structure: [(tBuSi)4(CH2=CHC6H4B)4O10]. Angewandte Chemie, 39(20), 3598-3601. doi:10.1002/1521-3773(20001016)39:20<3598::aid-anie3598>3.0.co;2-a es_ES
dc.description.references Mingotaud, A.-F., Héroguez, V., & Soum, A. (1998). Synthesis of difunctional borasiloxanes and their behavior in metathesis reactions. Journal of Organometallic Chemistry, 560(1-2), 109-115. doi:10.1016/s0022-328x(98)00498-7 es_ES
dc.description.references Beckett, M. A., Rugen-Hankey, M. P., & Sukumar Varma, K. (2003). Synthesis and characterisation of cyclo-boratetrasiloxane, (RBO)(Me2SiO)3 (R=nBu, Ar), derivatives. Polyhedron, 22(25-26), 3333-3337. doi:10.1016/s0277-5387(03)00478-9 es_ES
dc.description.references Schiavon, M. A., Armelin, N. A., & Yoshida, I. V. P. (2008). Novel poly(borosiloxane) precursors to amorphous SiBCO ceramics. Materials Chemistry and Physics, 112(3), 1047-1054. doi:10.1016/j.matchemphys.2008.07.041 es_ES
dc.description.references Brisdon, B. J., Mahon, M. F., Molloy, K. C., & Schofield, P. J. (1992). Synthesis and structural characterization of cycloborasiloxanes: The X-ray crystal structures of cyclo-1,3,3,5,5-pentaphenyl-1-bora-3,5-disiloxane and cyclo-1,3,3,5,7,7-hexaphenyl-1,5-dibora-3,7-disiloxane. Journal of Organometallic Chemistry, 436(1), 11-22. doi:10.1016/0022-328x(92)85022-o es_ES
dc.description.references Murphy, D., Sheehan, J. P., Spalding, T. R., Ferguson, G., Lough, A. J., & Gallagher, J. F. (1993). Compounds containing B–O–X bonds (X = Si, Ge, Sn, Pb). Part 4.—Crystal structures of B(OSiPh3)3, PhB(OSiPh3)2and PhB(OGePh3)2. J. Mater. Chem., 3(12), 1275-1283. doi:10.1039/jm9930301275 es_ES
dc.description.references Zhao, Z., Cammidge, A. N., & Cook, M. J. (2009). Towards black chromophores: μ-oxo linked phthalocyanine–porphyrin dyads and phthalocyanine–subphthalocyanine dyad and triad arrays. Chemical Communications, (48), 7530. doi:10.1039/b916649a es_ES
dc.description.references Fujdala, K. L., Oliver, A. G., Hollander, F. J., & Tilley, T. D. (2003). Tris(tert-butoxy)siloxy Derivatives of Boron, Including the Boronous Acid HOB[OSi(OtBu)3]2and the Metal (Siloxy)boryloxide Complex Cp2Zr(Me)OB[OSi(OtBu)3]2:  A Remarkable Crystal Structure with 18 Independent Molecules in Its Asymmetric Unit. Inorganic Chemistry, 42(4), 1140-1150. doi:10.1021/ic0205482 es_ES
dc.description.references Kleeberg, C., Cheung, M. S., Lin, Z., & Marder, T. B. (2011). Copper-Mediated Reduction of CO2with pinB-SiMe2Ph via CO2Insertion into a Copper–Silicon Bond. Journal of the American Chemical Society, 133(47), 19060-19063. doi:10.1021/ja208969d es_ES
dc.description.references Metcalfe, R. A., Kreller, D. I., Tian, J., Kim, H., Taylor, N. J., Corrigan, J. F., & Collins, S. (2002). Organoborane-Modified Silica Supports for Olefin Polymerization:  Soluble Models for Metallocene Catalyst Deactivation. Organometallics, 21(8), 1719-1726. doi:10.1021/om010284b es_ES
dc.description.references Kijima, I., Yamamoto, T., & Abe, Y. (1971). Alkoxysilanes. VIII. The Preparation of Alkoxysiloxy Derivatives of Aluminum and Boron. Bulletin of the Chemical Society of Japan, 44(11), 3193-3194. doi:10.1246/bcsj.44.3193 es_ES
dc.description.references Marciniec, B., & Walkowiak, J. (2008). New catalytic route to borasiloxanes. Chemical Communications, (23), 2695. doi:10.1039/b801013g es_ES
dc.description.references Ohmura, T., Torigoe, T., & Suginome, M. (2012). Catalytic Functionalization of Methyl Group on Silicon: Iridium-Catalyzed C(sp3)–H Borylation of Methylchlorosilanes. Journal of the American Chemical Society, 134(42), 17416-17419. doi:10.1021/ja307956w es_ES
dc.description.references Yoshimura, A., Yoshinaga, M., Yamashita, H., Igarashi, M., Shimada, S., & Sato, K. (2017). A convenient and clean synthetic method for borasiloxanes by Pd-catalysed reaction of silanols with diborons. Chemical Communications, 53(43), 5822-5825. doi:10.1039/c7cc02420g es_ES
dc.description.references Ito, M., Itazaki, M., & Nakazawa, H. (2014). Selective Boryl Silyl Ether Formation in the Photoreaction of Bisboryloxide/Boroxine with Hydrosilane Catalyzed by a Transition-Metal Carbonyl Complex. Journal of the American Chemical Society, 136(17), 6183-6186. doi:10.1021/ja500465x es_ES
dc.description.references Chatterjee, B., & Gunanathan, C. (2017). Ruthenium-catalysed multicomponent synthesis of borasiloxanes. Chemical Communications, 53(16), 2515-2518. doi:10.1039/c7cc00787f es_ES
dc.description.references Huang, Y.-B., Liang, J., Wang, X.-S., & Cao, R. (2017). Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46(1), 126-157. doi:10.1039/c6cs00250a es_ES
dc.description.references Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catalysis Science & Technology, 6(14), 5238-5261. doi:10.1039/c6cy00695g es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703 es_ES
dc.description.references Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 267(1), 1-4. doi:10.1016/j.jcat.2009.08.001 es_ES
dc.description.references Opanasenko, M., Dhakshinamoorthy, A., Shamzhy, M., Nachtigall, P., Horáček, M., Garcia, H., & Čejka, J. (2013). Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol., 3(2), 500-507. doi:10.1039/c2cy20586f es_ES
dc.description.references Chui, S. S. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283(5405), 1148-1150. doi:10.1126/science.283.5405.1148 es_ES
dc.description.references Dhakshinamoorthy, A., Concepcion, P., & Garcia, H. (2016). Dehydrogenative coupling of silanes with alcohols catalyzed by Cu3(BTC)2. Chemical Communications, 52(13), 2725-2728. doi:10.1039/c5cc10216b es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2017). HKUST-1 catalyzed room temperature hydrogenation of acetophenone by silanes. Catalysis Communications, 97, 74-78. doi:10.1016/j.catcom.2017.03.023 es_ES
dc.description.references Bennett, E., Wilson, T., Murphy, P. J., Refson, K., Hannon, A. C., Imberti, S., … Parker, S. F. (2015). How the Surface Structure Determines the Properties of CuH. Inorganic Chemistry, 54(5), 2213-2220. doi:10.1021/ic5027009 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem