- -

Synthesis of borasiloxanes by oxidative hydrolysis of silanes and pinacolborane using Cu3(BTC)2 as a solid catalyst

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of borasiloxanes by oxidative hydrolysis of silanes and pinacolborane using Cu3(BTC)2 as a solid catalyst

Mostrar el registro completo del ítem

Dhakshinamoorthy, A.; Asiri, AM.; Concepción Heydorn, P.; García Gómez, H. (2017). Synthesis of borasiloxanes by oxidative hydrolysis of silanes and pinacolborane using Cu3(BTC)2 as a solid catalyst. Chemical Communications. 53(72):9998-10001. https://doi.org/10.1039/c7cc05221a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105528

Ficheros en el ítem

Metadatos del ítem

Título: Synthesis of borasiloxanes by oxidative hydrolysis of silanes and pinacolborane using Cu3(BTC)2 as a solid catalyst
Autor: Dhakshinamoorthy, Amarajothi Asiri, Abdullah M. Concepción Heydorn, Patricia García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Fecha de fin de embargo: 2018-09-16
Resumen:
[EN] A convenient method for the synthesis of borasiloxanes from silanes and pinacolboranes using Cu-3(BTC)(2) as a heterogeneous catalyst in acetonitrile at 70 degrees C is reported. This procedure is more convenient than ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemical Communications. (issn: 1359-7345 )
DOI: 10.1039/c7cc05221a
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c7cc05221a
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/
Agradecimientos:
AD thanks the University Grants Commission (UGC), New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Programme. AD also thanks the Department of Science and Technology, India, for the financial ...[+]
Tipo: Artículo

References

Liu, W., Pink, M., & Lee, D. (2009). Conjugated Polymer Sensors Built on π-Extended Borasiloxane Cages. Journal of the American Chemical Society, 131(24), 8703-8707. doi:10.1021/ja902333p

Khelevina, O. G., & Malyasova, A. S. (2014). Cross-linking of borosiloxane oligomers and properties of materials with vulcanized borosiloxane coating. Russian Journal of Applied Chemistry, 87(4), 480-484. doi:10.1134/s10704272140400144

Puneet, P., Vedarajan, R., & Matsumi, N. (2016). Alternating Poly(borosiloxane) for Solid State Ultrasensitivity Toward Fluoride Ions in Aqueous Media. ACS Sensors, 1(10), 1198-1202. doi:10.1021/acssensors.6b00346 [+]
Liu, W., Pink, M., & Lee, D. (2009). Conjugated Polymer Sensors Built on π-Extended Borasiloxane Cages. Journal of the American Chemical Society, 131(24), 8703-8707. doi:10.1021/ja902333p

Khelevina, O. G., & Malyasova, A. S. (2014). Cross-linking of borosiloxane oligomers and properties of materials with vulcanized borosiloxane coating. Russian Journal of Applied Chemistry, 87(4), 480-484. doi:10.1134/s10704272140400144

Puneet, P., Vedarajan, R., & Matsumi, N. (2016). Alternating Poly(borosiloxane) for Solid State Ultrasensitivity Toward Fluoride Ions in Aqueous Media. ACS Sensors, 1(10), 1198-1202. doi:10.1021/acssensors.6b00346

Han, Y.-K., Yoo, J., & Yim, T. (2016). Distinct Reaction Characteristics of Electrolyte Additives for High-Voltage Lithium-Ion Batteries: Tris(trimethylsilyl) Phosphite, Borate, and Phosphate. Electrochimica Acta, 215, 455-465. doi:10.1016/j.electacta.2016.08.131

Makarova, E. A., Shimizu, S., Matsuda, A., Luk’yanets, E. A., & Kobayashi, N. (2008). meso-Aryl tribenzosubporphyrin—a totally substituted subporphyrin species. Chemical Communications, (18), 2109. doi:10.1039/b801712c

Neville, L. A., Spalding, T. R., & Ferguson, G. (2000). A Novel Borosilicate Cage Compound with an Incomplete B4Si4 Cube Structure: [(tBuSi)4(CH2=CHC6H4B)4O10]. Angewandte Chemie, 39(20), 3598-3601. doi:10.1002/1521-3773(20001016)39:20<3598::aid-anie3598>3.0.co;2-a

Mingotaud, A.-F., Héroguez, V., & Soum, A. (1998). Synthesis of difunctional borasiloxanes and their behavior in metathesis reactions. Journal of Organometallic Chemistry, 560(1-2), 109-115. doi:10.1016/s0022-328x(98)00498-7

Beckett, M. A., Rugen-Hankey, M. P., & Sukumar Varma, K. (2003). Synthesis and characterisation of cyclo-boratetrasiloxane, (RBO)(Me2SiO)3 (R=nBu, Ar), derivatives. Polyhedron, 22(25-26), 3333-3337. doi:10.1016/s0277-5387(03)00478-9

Schiavon, M. A., Armelin, N. A., & Yoshida, I. V. P. (2008). Novel poly(borosiloxane) precursors to amorphous SiBCO ceramics. Materials Chemistry and Physics, 112(3), 1047-1054. doi:10.1016/j.matchemphys.2008.07.041

Brisdon, B. J., Mahon, M. F., Molloy, K. C., & Schofield, P. J. (1992). Synthesis and structural characterization of cycloborasiloxanes: The X-ray crystal structures of cyclo-1,3,3,5,5-pentaphenyl-1-bora-3,5-disiloxane and cyclo-1,3,3,5,7,7-hexaphenyl-1,5-dibora-3,7-disiloxane. Journal of Organometallic Chemistry, 436(1), 11-22. doi:10.1016/0022-328x(92)85022-o

Murphy, D., Sheehan, J. P., Spalding, T. R., Ferguson, G., Lough, A. J., & Gallagher, J. F. (1993). Compounds containing B–O–X bonds (X = Si, Ge, Sn, Pb). Part 4.—Crystal structures of B(OSiPh3)3, PhB(OSiPh3)2and PhB(OGePh3)2. J. Mater. Chem., 3(12), 1275-1283. doi:10.1039/jm9930301275

Zhao, Z., Cammidge, A. N., & Cook, M. J. (2009). Towards black chromophores: μ-oxo linked phthalocyanine–porphyrin dyads and phthalocyanine–subphthalocyanine dyad and triad arrays. Chemical Communications, (48), 7530. doi:10.1039/b916649a

Fujdala, K. L., Oliver, A. G., Hollander, F. J., & Tilley, T. D. (2003). Tris(tert-butoxy)siloxy Derivatives of Boron, Including the Boronous Acid HOB[OSi(OtBu)3]2and the Metal (Siloxy)boryloxide Complex Cp2Zr(Me)OB[OSi(OtBu)3]2:  A Remarkable Crystal Structure with 18 Independent Molecules in Its Asymmetric Unit. Inorganic Chemistry, 42(4), 1140-1150. doi:10.1021/ic0205482

Kleeberg, C., Cheung, M. S., Lin, Z., & Marder, T. B. (2011). Copper-Mediated Reduction of CO2with pinB-SiMe2Ph via CO2Insertion into a Copper–Silicon Bond. Journal of the American Chemical Society, 133(47), 19060-19063. doi:10.1021/ja208969d

Metcalfe, R. A., Kreller, D. I., Tian, J., Kim, H., Taylor, N. J., Corrigan, J. F., & Collins, S. (2002). Organoborane-Modified Silica Supports for Olefin Polymerization:  Soluble Models for Metallocene Catalyst Deactivation. Organometallics, 21(8), 1719-1726. doi:10.1021/om010284b

Kijima, I., Yamamoto, T., & Abe, Y. (1971). Alkoxysilanes. VIII. The Preparation of Alkoxysiloxy Derivatives of Aluminum and Boron. Bulletin of the Chemical Society of Japan, 44(11), 3193-3194. doi:10.1246/bcsj.44.3193

Marciniec, B., & Walkowiak, J. (2008). New catalytic route to borasiloxanes. Chemical Communications, (23), 2695. doi:10.1039/b801013g

Ohmura, T., Torigoe, T., & Suginome, M. (2012). Catalytic Functionalization of Methyl Group on Silicon: Iridium-Catalyzed C(sp3)–H Borylation of Methylchlorosilanes. Journal of the American Chemical Society, 134(42), 17416-17419. doi:10.1021/ja307956w

Yoshimura, A., Yoshinaga, M., Yamashita, H., Igarashi, M., Shimada, S., & Sato, K. (2017). A convenient and clean synthetic method for borasiloxanes by Pd-catalysed reaction of silanols with diborons. Chemical Communications, 53(43), 5822-5825. doi:10.1039/c7cc02420g

Ito, M., Itazaki, M., & Nakazawa, H. (2014). Selective Boryl Silyl Ether Formation in the Photoreaction of Bisboryloxide/Boroxine with Hydrosilane Catalyzed by a Transition-Metal Carbonyl Complex. Journal of the American Chemical Society, 136(17), 6183-6186. doi:10.1021/ja500465x

Chatterjee, B., & Gunanathan, C. (2017). Ruthenium-catalysed multicomponent synthesis of borasiloxanes. Chemical Communications, 53(16), 2515-2518. doi:10.1039/c7cc00787f

Huang, Y.-B., Liang, J., Wang, X.-S., & Cao, R. (2017). Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 46(1), 126-157. doi:10.1039/c6cs00250a

Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catalysis Science & Technology, 6(14), 5238-5261. doi:10.1039/c6cy00695g

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic Oxidation of Benzylic Alcohols Catalyzed by Metal−Organic Frameworks Assisted by TEMPO. ACS Catalysis, 1(1), 48-53. doi:10.1021/cs1000703

Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Metal-Organic Frameworks as Efficient Heterogeneous Catalysts for the Regioselective Ring Opening of Epoxides. Chemistry - A European Journal, 16(28), 8530-8536. doi:10.1002/chem.201000588

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2009). Metal organic frameworks as efficient heterogeneous catalysts for the oxidation of benzylic compounds with t-butylhydroperoxide. Journal of Catalysis, 267(1), 1-4. doi:10.1016/j.jcat.2009.08.001

Opanasenko, M., Dhakshinamoorthy, A., Shamzhy, M., Nachtigall, P., Horáček, M., Garcia, H., & Čejka, J. (2013). Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catal. Sci. Technol., 3(2), 500-507. doi:10.1039/c2cy20586f

Chui, S. S. (1999). A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, 283(5405), 1148-1150. doi:10.1126/science.283.5405.1148

Dhakshinamoorthy, A., Concepcion, P., & Garcia, H. (2016). Dehydrogenative coupling of silanes with alcohols catalyzed by Cu3(BTC)2. Chemical Communications, 52(13), 2725-2728. doi:10.1039/c5cc10216b

Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2017). HKUST-1 catalyzed room temperature hydrogenation of acetophenone by silanes. Catalysis Communications, 97, 74-78. doi:10.1016/j.catcom.2017.03.023

Bennett, E., Wilson, T., Murphy, P. J., Refson, K., Hannon, A. C., Imberti, S., … Parker, S. F. (2015). How the Surface Structure Determines the Properties of CuH. Inorganic Chemistry, 54(5), 2213-2220. doi:10.1021/ic5027009

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem