Mostrar el registro sencillo del ítem
dc.contributor.author | He, Jinbao | es_ES |
dc.contributor.author | Dhakshinamoorthy, Amarajothi | es_ES |
dc.contributor.author | Primo Arnau, Ana María | es_ES |
dc.contributor.author | García Gómez, Hermenegildo | es_ES |
dc.date.accessioned | 2018-07-09T06:45:10Z | |
dc.date.available | 2018-07-09T06:45:10Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1867-3880 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/105542 | |
dc.description.abstract | [EN] Fe or Co nanoparticles (NPs) and two nanoparticulate Fe-Co alloys having different Fe/Co atomic ratio with average particle size ranging from 10.9 to 26.5 nm embedded in turbostratic graphitic carbon matrix have been prepared by pyrolysis at 900 degrees C under inert atmosphere of chitosan powders containing Fe2+ and Co2+ ions in various proportions. The resulting Fe/CoNP@C samples have been evaluated as heterogeneous catalysts for the oxidative C-N coupling of amides and aromatic N-H compounds. It was observed that sequential addition of two aliquots of tert-butyl hydroperoxide (TBHP) in an excess of N, N-dimethylacetamide (DMA) as solvent affords the corresponding coupling product in high yields, and the most efficient catalyst was FeNP@C. FeNP@C is reusable and exhibits a wide scope. The catalytic activity of Fe is supported by using highly pure Fe salt and by the observation that purposely addition of Cu2+ impurities even plays a detrimental effect on the catalytic activity. Mechanistic studies by quenching with 2,2,6,6-tetramethylpiperidyl-1-oxyl (TEMPO) have shown that the amide radical is the key reaction intermediate, and the role of FeNP@C is to generate the first radicals by TBHP decomposition. | es_ES |
dc.description.sponsorship | Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-1) and Generalitat Valenciana (Prometeo 2013-014) is gratefully acknowledged. J.H. thanks the Chinese Scholarship Council for a doctoral fellowship at Valencia. A.D.M. thanks University Grants Commission, New Delhi, for the award of Assistant Professorship under its Faculty Recharge Program. A.D.M. also thanks the Department of Science and Technology, India, for the financial support through the Extra Mural Research funding (EMR/2016/006500). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | ChemCatChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Amides | es_ES |
dc.subject | Carbon | es_ES |
dc.subject | Iron | es_ES |
dc.subject | Nanoparticles | es_ES |
dc.subject | Radical reactions | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative C-N Coupling of Aromatic N-H Compounds and Amides | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cctc.201700429 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-08-09 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | He, J.; Dhakshinamoorthy, A.; Primo Arnau, AM.; García Gómez, H. (2017). Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative C-N Coupling of Aromatic N-H Compounds and Amides. ChemCatChem. 9(15):3003-3012. https://doi.org/10.1002/cctc.201700429 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/cctc.201700429 | es_ES |
dc.description.upvformatpinicio | 3003 | es_ES |
dc.description.upvformatpfin | 3012 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.description.issue | 15 | es_ES |
dc.relation.pasarela | S\356326 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766 | es_ES |
dc.description.references | Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse. Angewandte Chemie, 117(48), 8062-8083. doi:10.1002/ange.200500766 | es_ES |
dc.description.references | Haruta, M. (2002). CATTECH, 6(3), 102-115. doi:10.1023/a:1020181423055 | es_ES |
dc.description.references | Narayanan, R., & El-Sayed, M. A. (2005). Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Nanoparticle Shape Dependence and Stability. The Journal of Physical Chemistry B, 109(26), 12663-12676. doi:10.1021/jp051066p | es_ES |
dc.description.references | Mikami, Y., Dhakshinamoorthy, A., Alvaro, M., & García, H. (2013). Catalytic activity of unsupported gold nanoparticles. Catal. Sci. Technol., 3(1), 58-69. doi:10.1039/c2cy20068f | es_ES |
dc.description.references | Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8 | es_ES |
dc.description.references | Haruta, M. (2004). Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bulletin, 37(1-2), 27-36. doi:10.1007/bf03215514 | es_ES |
dc.description.references | Chinchilla, R., & Nájera, C. (2011). Recent advances in Sonogashira reactions. Chemical Society Reviews, 40(10), 5084. doi:10.1039/c1cs15071e | es_ES |
dc.description.references | Dhakshinamoorthy, A., Navalon, S., Alvaro, M., & Garcia, H. (2012). Metal Nanoparticles as Heterogeneous Fenton Catalysts. ChemSusChem, 5(1), 46-64. doi:10.1002/cssc.201100517 | es_ES |
dc.description.references | Farina, V. (2004). High-Turnover Palladium Catalysts in Cross-Coupling and Heck Chemistry: A Critical Overview. Advanced Synthesis & Catalysis, 346(13-15), 1553-1582. doi:10.1002/adsc.200404178 | es_ES |
dc.description.references | White, R. J., Luque, R., Budarin, V. L., Clark, J. H., & Macquarrie, D. J. (2009). Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev., 38(2), 481-494. doi:10.1039/b802654h | es_ES |
dc.description.references | Comotti, M., Li, W.-C., Spliethoff, B., & Schüth, F. (2006). Support Effect in High Activity Gold Catalysts for CO Oxidation. Journal of the American Chemical Society, 128(3), 917-924. doi:10.1021/ja0561441 | es_ES |
dc.description.references | Lopez, N. (2004). On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. Journal of Catalysis, 223(1), 232-235. doi:10.1016/j.jcat.2004.01.001 | es_ES |
dc.description.references | Okumura, M., Nakamura, S., Tsubota, S., Nakamura, T., Azuma, M., & Haruta, M. (1998). Catalysis Letters, 51(1/2), 53-58. doi:10.1023/a:1019020614336 | es_ES |
dc.description.references | Pisiewicz, S., Formenti, D., Surkus, A.-E., Pohl, M.-M., Radnik, J., Junge, K., … Beller, M. (2015). Synthesis of Nickel Nanoparticles with N-Doped Graphene Shells for Catalytic Reduction Reactions. ChemCatChem, 8(1), 129-134. doi:10.1002/cctc.201500848 | es_ES |
dc.description.references | Westerhaus, F. A., Jagadeesh, R. V., Wienhöfer, G., Pohl, M.-M., Radnik, J., Surkus, A.-E., … Beller, M. (2013). Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 5(6), 537-543. doi:10.1038/nchem.1645 | es_ES |
dc.description.references | Banerjee, A., Gokhale, R., Bhatnagar, S., Jog, J., Bhardwaj, M., Lefez, B., … Ogale, S. (2012). MOF derived porous carbon–Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. Journal of Materials Chemistry, 22(37), 19694. doi:10.1039/c2jm33798c | es_ES |
dc.description.references | Hu, J., Wang, H., Gao, Q., & Guo, H. (2010). Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors. Carbon, 48(12), 3599-3606. doi:10.1016/j.carbon.2010.06.008 | es_ES |
dc.description.references | Farad. Discuss 2016 https://doi.org/10.1039/C6FD00198J | es_ES |
dc.description.references | Wezendonk, T. A., Santos, V. P., Nasalevich, M. A., Warringa, Q. S. E., Dugulan, A. I., Chojecki, A., … Gascon, J. (2016). Elucidating the Nature of Fe Species during Pyrolysis of the Fe-BTC MOF into Highly Active and Stable Fischer–Tropsch Catalysts. ACS Catalysis, 6(5), 3236-3247. doi:10.1021/acscatal.6b00426 | es_ES |
dc.description.references | An, B., Cheng, K., Wang, C., Wang, Y., & Lin, W. (2016). Pyrolysis of Metal–Organic Frameworks to Fe3O4@Fe5C2 Core–Shell Nanoparticles for Fischer–Tropsch Synthesis. ACS Catalysis, 6(6), 3610-3618. doi:10.1021/acscatal.6b00464 | es_ES |
dc.description.references | Santos, V. P., Wezendonk, T. A., Jaén, J. J. D., Dugulan, A. I., Nasalevich, M. A., Islam, H.-U., … Gascon, J. (2015). Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nature Communications, 6(1). doi:10.1038/ncomms7451 | es_ES |
dc.description.references | DE JONG, K. P., & GEUS, J. W. (2000). Carbon Nanofibers: Catalytic Synthesis and Applications. Catalysis Reviews, 42(4), 481-510. doi:10.1081/cr-100101954 | es_ES |
dc.description.references | Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., & Ryoo, R. (2001). Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 412(6843), 169-172. doi:10.1038/35084046 | es_ES |
dc.description.references | Serp, P. (2003). Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 253(2), 337-358. doi:10.1016/s0926-860x(03)00549-0 | es_ES |
dc.description.references | Chen, Z., Higgins, D., Yu, A., Zhang, L., & Zhang, J. (2011). A review on non-precious metal electrocatalysts for PEM fuel cells. Energy & Environmental Science, 4(9), 3167. doi:10.1039/c0ee00558d | es_ES |
dc.description.references | Sherry, B. D., & Fürstner, A. (2008). The Promise and Challenge of Iron-Catalyzed Cross Coupling. Accounts of Chemical Research, 41(11), 1500-1511. doi:10.1021/ar800039x | es_ES |
dc.description.references | Thomé, I., Nijs, A., & Bolm, C. (2012). Trace metal impurities in catalysis. Chemical Society Reviews, 41(3), 979. doi:10.1039/c2cs15249e | es_ES |
dc.description.references | Saidulu, G., Kumar, R. A., & Reddy, K. R. (2015). Iron-catalyzed C–N bond formation via oxidative Csp3–H bond functionalization adjacent to nitrogen in amides and anilines: Synthesis of N-alkyl and N-benzyl azoles. Tetrahedron Letters, 56(28), 4200-4203. doi:10.1016/j.tetlet.2015.05.048 | es_ES |
dc.description.references | Xia, Q., & Chen, W. (2012). Iron-Catalyzed N-Alkylation of Azoles via Cleavage of an sp3 C–H Bond Adjacent to a Nitrogen Atom. The Journal of Organic Chemistry, 77(20), 9366-9373. doi:10.1021/jo301568e | es_ES |
dc.description.references | Truong, T., Nguyen, K. D., Doan, S. H., & Phan, N. T. S. (2016). Efficient and recyclable Cu2(BPDC)2(DABCO)-catalyzed direct amination of activated sp3 C H bonds by N–H heterocycles. Applied Catalysis A: General, 510, 27-33. doi:10.1016/j.apcata.2015.10.042 | es_ES |
dc.description.references | Chen, F., Topf, C., Radnik, J., Kreyenschulte, C., Lund, H., Schneider, M., … Beller, M. (2016). Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and C═O Bonds. Journal of the American Chemical Society, 138(28), 8781-8788. doi:10.1021/jacs.6b03439 | es_ES |
dc.description.references | Cui, X., Li, Y., Bachmann, S., Scalone, M., Surkus, A.-E., Junge, K., … Beller, M. (2015). Correction to «Synthesis and Characterization of Iron–Nitrogen-Doped Graphene/Core–Shell Catalysts: Efficient Oxidative Dehydrogenation of N-Heterocycles». Journal of the American Chemical Society, 138(1), 457-457. doi:10.1021/jacs.5b10746 | es_ES |
dc.description.references | He, L., Weniger, F., Neumann, H., & Beller, M. (2016). Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry. Angewandte Chemie International Edition, 55(41), 12582-12594. doi:10.1002/anie.201603198 | es_ES |
dc.description.references | He, L., Weniger, F., Neumann, H., & Beller, M. (2016). Synthese, Charakterisierung und Anwendungen von Metall-Nanopartikeln nach Fixierung auf N-dotiertem Kohlenstoff: Katalyse jenseits der Elektrochemie. Angewandte Chemie, 128(41), 12770-12783. doi:10.1002/ange.201603198 | es_ES |
dc.description.references | Ziccarelli, I., Neumann, H., Kreyenschulte, C., Gabriele, B., & Beller, M. (2016). Pd-Supported on N-doped carbon: improved heterogeneous catalyst for base-free alkoxycarbonylation of aryl iodides. Chemical Communications, 52(86), 12729-12732. doi:10.1039/c6cc07269k | es_ES |
dc.description.references | Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g | es_ES |
dc.description.references | Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068 | es_ES |
dc.description.references | Abellán, G., Latorre-Sánchez, M., Fornés, V., Ribera, A., & García, H. (2012). Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide–graphene oxide composites. Chemical Communications, 48(93), 11416. doi:10.1039/c2cc35750j | es_ES |
dc.description.references | Latorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007 | es_ES |
dc.description.references | Park, E., Ostrovski, O., Zhang, J., Thomson, S., & Howe, R. (2001). Characterization of phases formed in the iron carbide process by X-ray diffraction, mossbauer, X-ray photoelectron spectroscopy, and raman spectroscopy analyses. Metallurgical and Materials Transactions B, 32(5), 839-845. doi:10.1007/s11663-001-0071-1 | es_ES |
dc.description.references | Peng, S., Wang, C., Xie, J., & Sun, S. (2006). Synthesis and Stabilization of Monodisperse Fe Nanoparticles. Journal of the American Chemical Society, 128(33), 10676-10677. doi:10.1021/ja063969h | es_ES |
dc.description.references | Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561 | es_ES |
dc.description.references | Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908 | es_ES |
dc.description.references | Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie, 128(2), 617-622. doi:10.1002/ange.201508908 | es_ES |
dc.description.references | Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819 | es_ES |
dc.description.references | Buaki-Sogo, M., Serra, M., Primo, A., Alvaro, M., & Garcia, H. (2012). Alginate as Template in the Preparation of Active Titania Photocatalysts. ChemCatChem, 5(2), 513-518. doi:10.1002/cctc.201200386 | es_ES |
dc.description.references | Lavorato, C., Primo, A., Molinari, R., & García, H. (2014). Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catalysis, 4(2), 497-504. doi:10.1021/cs401068m | es_ES |
dc.description.references | Buchwald, S. L., & Bolm, C. (2009). On the Role of Metal Contaminants in Catalyses with FeCl3. Angewandte Chemie International Edition, 48(31), 5586-5587. doi:10.1002/anie.200902237 | es_ES |
dc.description.references | Buchwald, S. L., & Bolm, C. (2009). On the Role of Metal Contaminants in Catalyses with FeCl3. Angewandte Chemie, 121(31), 5694-5695. doi:10.1002/ange.200902237 | es_ES |