- -

Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative C-N Coupling of Aromatic N-H Compounds and Amides

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative C-N Coupling of Aromatic N-H Compounds and Amides

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author He, Jinbao es_ES
dc.contributor.author Dhakshinamoorthy, Amarajothi es_ES
dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2018-07-09T06:45:10Z
dc.date.available 2018-07-09T06:45:10Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1867-3880 es_ES
dc.identifier.uri http://hdl.handle.net/10251/105542
dc.description.abstract [EN] Fe or Co nanoparticles (NPs) and two nanoparticulate Fe-Co alloys having different Fe/Co atomic ratio with average particle size ranging from 10.9 to 26.5 nm embedded in turbostratic graphitic carbon matrix have been prepared by pyrolysis at 900 degrees C under inert atmosphere of chitosan powders containing Fe2+ and Co2+ ions in various proportions. The resulting Fe/CoNP@C samples have been evaluated as heterogeneous catalysts for the oxidative C-N coupling of amides and aromatic N-H compounds. It was observed that sequential addition of two aliquots of tert-butyl hydroperoxide (TBHP) in an excess of N, N-dimethylacetamide (DMA) as solvent affords the corresponding coupling product in high yields, and the most efficient catalyst was FeNP@C. FeNP@C is reusable and exhibits a wide scope. The catalytic activity of Fe is supported by using highly pure Fe salt and by the observation that purposely addition of Cu2+ impurities even plays a detrimental effect on the catalytic activity. Mechanistic studies by quenching with 2,2,6,6-tetramethylpiperidyl-1-oxyl (TEMPO) have shown that the amide radical is the key reaction intermediate, and the role of FeNP@C is to generate the first radicals by TBHP decomposition. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-1) and Generalitat Valenciana (Prometeo 2013-014) is gratefully acknowledged. J.H. thanks the Chinese Scholarship Council for a doctoral fellowship at Valencia. A.D.M. thanks University Grants Commission, New Delhi, for the award of Assistant Professorship under its Faculty Recharge Program. A.D.M. also thanks the Department of Science and Technology, India, for the financial support through the Extra Mural Research funding (EMR/2016/006500). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemCatChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Amides es_ES
dc.subject Carbon es_ES
dc.subject Iron es_ES
dc.subject Nanoparticles es_ES
dc.subject Radical reactions es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative C-N Coupling of Aromatic N-H Compounds and Amides es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cctc.201700429 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-08-09 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation He, J.; Dhakshinamoorthy, A.; Primo Arnau, AM.; García Gómez, H. (2017). Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative C-N Coupling of Aromatic N-H Compounds and Amides. ChemCatChem. 9(15):3003-3012. https://doi.org/10.1002/cctc.201700429 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cctc.201700429 es_ES
dc.description.upvformatpinicio 3003 es_ES
dc.description.upvformatpfin 3012 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 15 es_ES
dc.relation.pasarela S\356326 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766 es_ES
dc.description.references Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse. Angewandte Chemie, 117(48), 8062-8083. doi:10.1002/ange.200500766 es_ES
dc.description.references Haruta, M. (2002). CATTECH, 6(3), 102-115. doi:10.1023/a:1020181423055 es_ES
dc.description.references Narayanan, R., & El-Sayed, M. A. (2005). Catalysis with Transition Metal Nanoparticles in Colloidal Solution:  Nanoparticle Shape Dependence and Stability. The Journal of Physical Chemistry B, 109(26), 12663-12676. doi:10.1021/jp051066p es_ES
dc.description.references Mikami, Y., Dhakshinamoorthy, A., Alvaro, M., & García, H. (2013). Catalytic activity of unsupported gold nanoparticles. Catal. Sci. Technol., 3(1), 58-69. doi:10.1039/c2cy20068f es_ES
dc.description.references Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8 es_ES
dc.description.references Haruta, M. (2004). Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bulletin, 37(1-2), 27-36. doi:10.1007/bf03215514 es_ES
dc.description.references Chinchilla, R., & Nájera, C. (2011). Recent advances in Sonogashira reactions. Chemical Society Reviews, 40(10), 5084. doi:10.1039/c1cs15071e es_ES
dc.description.references Dhakshinamoorthy, A., Navalon, S., Alvaro, M., & Garcia, H. (2012). Metal Nanoparticles as Heterogeneous Fenton Catalysts. ChemSusChem, 5(1), 46-64. doi:10.1002/cssc.201100517 es_ES
dc.description.references Farina, V. (2004). High-Turnover Palladium Catalysts in Cross-Coupling and Heck Chemistry: A Critical Overview. Advanced Synthesis & Catalysis, 346(13-15), 1553-1582. doi:10.1002/adsc.200404178 es_ES
dc.description.references White, R. J., Luque, R., Budarin, V. L., Clark, J. H., & Macquarrie, D. J. (2009). Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev., 38(2), 481-494. doi:10.1039/b802654h es_ES
dc.description.references Comotti, M., Li, W.-C., Spliethoff, B., & Schüth, F. (2006). Support Effect in High Activity Gold Catalysts for CO Oxidation. Journal of the American Chemical Society, 128(3), 917-924. doi:10.1021/ja0561441 es_ES
dc.description.references Lopez, N. (2004). On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. Journal of Catalysis, 223(1), 232-235. doi:10.1016/j.jcat.2004.01.001 es_ES
dc.description.references Okumura, M., Nakamura, S., Tsubota, S., Nakamura, T., Azuma, M., & Haruta, M. (1998). Catalysis Letters, 51(1/2), 53-58. doi:10.1023/a:1019020614336 es_ES
dc.description.references Pisiewicz, S., Formenti, D., Surkus, A.-E., Pohl, M.-M., Radnik, J., Junge, K., … Beller, M. (2015). Synthesis of Nickel Nanoparticles with N-Doped Graphene Shells for Catalytic Reduction Reactions. ChemCatChem, 8(1), 129-134. doi:10.1002/cctc.201500848 es_ES
dc.description.references Westerhaus, F. A., Jagadeesh, R. V., Wienhöfer, G., Pohl, M.-M., Radnik, J., Surkus, A.-E., … Beller, M. (2013). Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 5(6), 537-543. doi:10.1038/nchem.1645 es_ES
dc.description.references Banerjee, A., Gokhale, R., Bhatnagar, S., Jog, J., Bhardwaj, M., Lefez, B., … Ogale, S. (2012). MOF derived porous carbon–Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. Journal of Materials Chemistry, 22(37), 19694. doi:10.1039/c2jm33798c es_ES
dc.description.references Hu, J., Wang, H., Gao, Q., & Guo, H. (2010). Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors. Carbon, 48(12), 3599-3606. doi:10.1016/j.carbon.2010.06.008 es_ES
dc.description.references Farad. Discuss 2016 https://doi.org/10.1039/C6FD00198J es_ES
dc.description.references Wezendonk, T. A., Santos, V. P., Nasalevich, M. A., Warringa, Q. S. E., Dugulan, A. I., Chojecki, A., … Gascon, J. (2016). Elucidating the Nature of Fe Species during Pyrolysis of the Fe-BTC MOF into Highly Active and Stable Fischer–Tropsch Catalysts. ACS Catalysis, 6(5), 3236-3247. doi:10.1021/acscatal.6b00426 es_ES
dc.description.references An, B., Cheng, K., Wang, C., Wang, Y., & Lin, W. (2016). Pyrolysis of Metal–Organic Frameworks to Fe3O4@Fe5C2 Core–Shell Nanoparticles for Fischer–Tropsch Synthesis. ACS Catalysis, 6(6), 3610-3618. doi:10.1021/acscatal.6b00464 es_ES
dc.description.references Santos, V. P., Wezendonk, T. A., Jaén, J. J. D., Dugulan, A. I., Nasalevich, M. A., Islam, H.-U., … Gascon, J. (2015). Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nature Communications, 6(1). doi:10.1038/ncomms7451 es_ES
dc.description.references DE JONG, K. P., & GEUS, J. W. (2000). Carbon Nanofibers: Catalytic Synthesis and Applications. Catalysis Reviews, 42(4), 481-510. doi:10.1081/cr-100101954 es_ES
dc.description.references Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., & Ryoo, R. (2001). Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 412(6843), 169-172. doi:10.1038/35084046 es_ES
dc.description.references Serp, P. (2003). Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 253(2), 337-358. doi:10.1016/s0926-860x(03)00549-0 es_ES
dc.description.references Chen, Z., Higgins, D., Yu, A., Zhang, L., & Zhang, J. (2011). A review on non-precious metal electrocatalysts for PEM fuel cells. Energy & Environmental Science, 4(9), 3167. doi:10.1039/c0ee00558d es_ES
dc.description.references Sherry, B. D., & Fürstner, A. (2008). The Promise and Challenge of Iron-Catalyzed Cross Coupling. Accounts of Chemical Research, 41(11), 1500-1511. doi:10.1021/ar800039x es_ES
dc.description.references Thomé, I., Nijs, A., & Bolm, C. (2012). Trace metal impurities in catalysis. Chemical Society Reviews, 41(3), 979. doi:10.1039/c2cs15249e es_ES
dc.description.references Saidulu, G., Kumar, R. A., & Reddy, K. R. (2015). Iron-catalyzed C–N bond formation via oxidative Csp3–H bond functionalization adjacent to nitrogen in amides and anilines: Synthesis of N-alkyl and N-benzyl azoles. Tetrahedron Letters, 56(28), 4200-4203. doi:10.1016/j.tetlet.2015.05.048 es_ES
dc.description.references Xia, Q., & Chen, W. (2012). Iron-Catalyzed N-Alkylation of Azoles via Cleavage of an sp3 C–H Bond Adjacent to a Nitrogen Atom. The Journal of Organic Chemistry, 77(20), 9366-9373. doi:10.1021/jo301568e es_ES
dc.description.references Truong, T., Nguyen, K. D., Doan, S. H., & Phan, N. T. S. (2016). Efficient and recyclable Cu2(BPDC)2(DABCO)-catalyzed direct amination of activated sp3 C H bonds by N–H heterocycles. Applied Catalysis A: General, 510, 27-33. doi:10.1016/j.apcata.2015.10.042 es_ES
dc.description.references Chen, F., Topf, C., Radnik, J., Kreyenschulte, C., Lund, H., Schneider, M., … Beller, M. (2016). Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and C═O Bonds. Journal of the American Chemical Society, 138(28), 8781-8788. doi:10.1021/jacs.6b03439 es_ES
dc.description.references Cui, X., Li, Y., Bachmann, S., Scalone, M., Surkus, A.-E., Junge, K., … Beller, M. (2015). Correction to «Synthesis and Characterization of Iron–Nitrogen-Doped Graphene/Core–Shell Catalysts: Efficient Oxidative Dehydrogenation of N-Heterocycles». Journal of the American Chemical Society, 138(1), 457-457. doi:10.1021/jacs.5b10746 es_ES
dc.description.references He, L., Weniger, F., Neumann, H., & Beller, M. (2016). Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry. Angewandte Chemie International Edition, 55(41), 12582-12594. doi:10.1002/anie.201603198 es_ES
dc.description.references He, L., Weniger, F., Neumann, H., & Beller, M. (2016). Synthese, Charakterisierung und Anwendungen von Metall-Nanopartikeln nach Fixierung auf N-dotiertem Kohlenstoff: Katalyse jenseits der Elektrochemie. Angewandte Chemie, 128(41), 12770-12783. doi:10.1002/ange.201603198 es_ES
dc.description.references Ziccarelli, I., Neumann, H., Kreyenschulte, C., Gabriele, B., & Beller, M. (2016). Pd-Supported on N-doped carbon: improved heterogeneous catalyst for base-free alkoxycarbonylation of aryl iodides. Chemical Communications, 52(86), 12729-12732. doi:10.1039/c6cc07269k es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.description.references Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068 es_ES
dc.description.references Abellán, G., Latorre-Sánchez, M., Fornés, V., Ribera, A., & García, H. (2012). Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide–graphene oxide composites. Chemical Communications, 48(93), 11416. doi:10.1039/c2cc35750j es_ES
dc.description.references Latorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007 es_ES
dc.description.references Park, E., Ostrovski, O., Zhang, J., Thomson, S., & Howe, R. (2001). Characterization of phases formed in the iron carbide process by X-ray diffraction, mossbauer, X-ray photoelectron spectroscopy, and raman spectroscopy analyses. Metallurgical and Materials Transactions B, 32(5), 839-845. doi:10.1007/s11663-001-0071-1 es_ES
dc.description.references Peng, S., Wang, C., Xie, J., & Sun, S. (2006). Synthesis and Stabilization of Monodisperse Fe Nanoparticles. Journal of the American Chemical Society, 128(33), 10676-10677. doi:10.1021/ja063969h es_ES
dc.description.references Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561 es_ES
dc.description.references Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908 es_ES
dc.description.references Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie, 128(2), 617-622. doi:10.1002/ange.201508908 es_ES
dc.description.references Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819 es_ES
dc.description.references Buaki-Sogo, M., Serra, M., Primo, A., Alvaro, M., & Garcia, H. (2012). Alginate as Template in the Preparation of Active Titania Photocatalysts. ChemCatChem, 5(2), 513-518. doi:10.1002/cctc.201200386 es_ES
dc.description.references Lavorato, C., Primo, A., Molinari, R., & García, H. (2014). Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catalysis, 4(2), 497-504. doi:10.1021/cs401068m es_ES
dc.description.references Buchwald, S. L., & Bolm, C. (2009). On the Role of Metal Contaminants in Catalyses with FeCl3. Angewandte Chemie International Edition, 48(31), 5586-5587. doi:10.1002/anie.200902237 es_ES
dc.description.references Buchwald, S. L., & Bolm, C. (2009). On the Role of Metal Contaminants in Catalyses with FeCl3. Angewandte Chemie, 121(31), 5694-5695. doi:10.1002/ange.200902237 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem