- -

Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative C-N Coupling of Aromatic N-H Compounds and Amides

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative C-N Coupling of Aromatic N-H Compounds and Amides

Mostrar el registro completo del ítem

He, J.; Dhakshinamoorthy, A.; Primo Arnau, AM.; García Gómez, H. (2017). Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative C-N Coupling of Aromatic N-H Compounds and Amides. ChemCatChem. 9(15):3003-3012. https://doi.org/10.1002/cctc.201700429

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105542

Ficheros en el ítem

Metadatos del ítem

Título: Iron Nanoparticles Embedded in Graphitic Carbon Matrix as Heterogeneous Catalysts for the Oxidative C-N Coupling of Aromatic N-H Compounds and Amides
Autor: He, Jinbao Dhakshinamoorthy, Amarajothi Primo Arnau, Ana María García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Fecha de fin de embargo: 2018-08-09
Resumen:
[EN] Fe or Co nanoparticles (NPs) and two nanoparticulate Fe-Co alloys having different Fe/Co atomic ratio with average particle size ranging from 10.9 to 26.5 nm embedded in turbostratic graphitic carbon matrix have been ...[+]
Palabras clave: Amides , Carbon , Iron , Nanoparticles , Radical reactions
Derechos de uso: Reserva de todos los derechos
Fuente:
ChemCatChem. (issn: 1867-3880 )
DOI: 10.1002/cctc.201700429
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/cctc.201700429
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/
Agradecimientos:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-69153-CO2-1) and Generalitat Valenciana (Prometeo 2013-014) is gratefully acknowledged. J.H. thanks the Chinese Scholarship ...[+]
Tipo: Artículo

References

Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766

Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse. Angewandte Chemie, 117(48), 8062-8083. doi:10.1002/ange.200500766

Haruta, M. (2002). CATTECH, 6(3), 102-115. doi:10.1023/a:1020181423055 [+]
Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanoparticles as Recyclable Catalysts: The Frontier between Homogeneous and Heterogeneous Catalysis. Angewandte Chemie International Edition, 44(48), 7852-7872. doi:10.1002/anie.200500766

Astruc, D., Lu, F., & Aranzaes, J. R. (2005). Nanopartikel als regenerierbare Katalysatoren: an der Nahtstelle zwischen homogener und heterogener Katalyse. Angewandte Chemie, 117(48), 8062-8083. doi:10.1002/ange.200500766

Haruta, M. (2002). CATTECH, 6(3), 102-115. doi:10.1023/a:1020181423055

Narayanan, R., & El-Sayed, M. A. (2005). Catalysis with Transition Metal Nanoparticles in Colloidal Solution:  Nanoparticle Shape Dependence and Stability. The Journal of Physical Chemistry B, 109(26), 12663-12676. doi:10.1021/jp051066p

Mikami, Y., Dhakshinamoorthy, A., Alvaro, M., & García, H. (2013). Catalytic activity of unsupported gold nanoparticles. Catal. Sci. Technol., 3(1), 58-69. doi:10.1039/c2cy20068f

Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today, 36(1), 153-166. doi:10.1016/s0920-5861(96)00208-8

Haruta, M. (2004). Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bulletin, 37(1-2), 27-36. doi:10.1007/bf03215514

Chinchilla, R., & Nájera, C. (2011). Recent advances in Sonogashira reactions. Chemical Society Reviews, 40(10), 5084. doi:10.1039/c1cs15071e

Dhakshinamoorthy, A., Navalon, S., Alvaro, M., & Garcia, H. (2012). Metal Nanoparticles as Heterogeneous Fenton Catalysts. ChemSusChem, 5(1), 46-64. doi:10.1002/cssc.201100517

Farina, V. (2004). High-Turnover Palladium Catalysts in Cross-Coupling and Heck Chemistry: A Critical Overview. Advanced Synthesis & Catalysis, 346(13-15), 1553-1582. doi:10.1002/adsc.200404178

White, R. J., Luque, R., Budarin, V. L., Clark, J. H., & Macquarrie, D. J. (2009). Supported metal nanoparticles on porous materials. Methods and applications. Chem. Soc. Rev., 38(2), 481-494. doi:10.1039/b802654h

Comotti, M., Li, W.-C., Spliethoff, B., & Schüth, F. (2006). Support Effect in High Activity Gold Catalysts for CO Oxidation. Journal of the American Chemical Society, 128(3), 917-924. doi:10.1021/ja0561441

Lopez, N. (2004). On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. Journal of Catalysis, 223(1), 232-235. doi:10.1016/j.jcat.2004.01.001

Okumura, M., Nakamura, S., Tsubota, S., Nakamura, T., Azuma, M., & Haruta, M. (1998). Catalysis Letters, 51(1/2), 53-58. doi:10.1023/a:1019020614336

Pisiewicz, S., Formenti, D., Surkus, A.-E., Pohl, M.-M., Radnik, J., Junge, K., … Beller, M. (2015). Synthesis of Nickel Nanoparticles with N-Doped Graphene Shells for Catalytic Reduction Reactions. ChemCatChem, 8(1), 129-134. doi:10.1002/cctc.201500848

Westerhaus, F. A., Jagadeesh, R. V., Wienhöfer, G., Pohl, M.-M., Radnik, J., Surkus, A.-E., … Beller, M. (2013). Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 5(6), 537-543. doi:10.1038/nchem.1645

Banerjee, A., Gokhale, R., Bhatnagar, S., Jog, J., Bhardwaj, M., Lefez, B., … Ogale, S. (2012). MOF derived porous carbon–Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. Journal of Materials Chemistry, 22(37), 19694. doi:10.1039/c2jm33798c

Hu, J., Wang, H., Gao, Q., & Guo, H. (2010). Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors. Carbon, 48(12), 3599-3606. doi:10.1016/j.carbon.2010.06.008

Farad. Discuss 2016 https://doi.org/10.1039/C6FD00198J

Wezendonk, T. A., Santos, V. P., Nasalevich, M. A., Warringa, Q. S. E., Dugulan, A. I., Chojecki, A., … Gascon, J. (2016). Elucidating the Nature of Fe Species during Pyrolysis of the Fe-BTC MOF into Highly Active and Stable Fischer–Tropsch Catalysts. ACS Catalysis, 6(5), 3236-3247. doi:10.1021/acscatal.6b00426

An, B., Cheng, K., Wang, C., Wang, Y., & Lin, W. (2016). Pyrolysis of Metal–Organic Frameworks to Fe3O4@Fe5C2 Core–Shell Nanoparticles for Fischer–Tropsch Synthesis. ACS Catalysis, 6(6), 3610-3618. doi:10.1021/acscatal.6b00464

Santos, V. P., Wezendonk, T. A., Jaén, J. J. D., Dugulan, A. I., Nasalevich, M. A., Islam, H.-U., … Gascon, J. (2015). Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nature Communications, 6(1). doi:10.1038/ncomms7451

DE JONG, K. P., & GEUS, J. W. (2000). Carbon Nanofibers: Catalytic Synthesis and Applications. Catalysis Reviews, 42(4), 481-510. doi:10.1081/cr-100101954

Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., & Ryoo, R. (2001). Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 412(6843), 169-172. doi:10.1038/35084046

Serp, P. (2003). Carbon nanotubes and nanofibers in catalysis. Applied Catalysis A: General, 253(2), 337-358. doi:10.1016/s0926-860x(03)00549-0

Chen, Z., Higgins, D., Yu, A., Zhang, L., & Zhang, J. (2011). A review on non-precious metal electrocatalysts for PEM fuel cells. Energy & Environmental Science, 4(9), 3167. doi:10.1039/c0ee00558d

Sherry, B. D., & Fürstner, A. (2008). The Promise and Challenge of Iron-Catalyzed Cross Coupling. Accounts of Chemical Research, 41(11), 1500-1511. doi:10.1021/ar800039x

Thomé, I., Nijs, A., & Bolm, C. (2012). Trace metal impurities in catalysis. Chemical Society Reviews, 41(3), 979. doi:10.1039/c2cs15249e

Saidulu, G., Kumar, R. A., & Reddy, K. R. (2015). Iron-catalyzed C–N bond formation via oxidative Csp3–H bond functionalization adjacent to nitrogen in amides and anilines: Synthesis of N-alkyl and N-benzyl azoles. Tetrahedron Letters, 56(28), 4200-4203. doi:10.1016/j.tetlet.2015.05.048

Xia, Q., & Chen, W. (2012). Iron-Catalyzed N-Alkylation of Azoles via Cleavage of an sp3 C–H Bond Adjacent to a Nitrogen Atom. The Journal of Organic Chemistry, 77(20), 9366-9373. doi:10.1021/jo301568e

Truong, T., Nguyen, K. D., Doan, S. H., & Phan, N. T. S. (2016). Efficient and recyclable Cu2(BPDC)2(DABCO)-catalyzed direct amination of activated sp3 C H bonds by N–H heterocycles. Applied Catalysis A: General, 510, 27-33. doi:10.1016/j.apcata.2015.10.042

Chen, F., Topf, C., Radnik, J., Kreyenschulte, C., Lund, H., Schneider, M., … Beller, M. (2016). Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and C═O Bonds. Journal of the American Chemical Society, 138(28), 8781-8788. doi:10.1021/jacs.6b03439

Cui, X., Li, Y., Bachmann, S., Scalone, M., Surkus, A.-E., Junge, K., … Beller, M. (2015). Correction to «Synthesis and Characterization of Iron–Nitrogen-Doped Graphene/Core–Shell Catalysts: Efficient Oxidative Dehydrogenation of N-Heterocycles». Journal of the American Chemical Society, 138(1), 457-457. doi:10.1021/jacs.5b10746

He, L., Weniger, F., Neumann, H., & Beller, M. (2016). Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry. Angewandte Chemie International Edition, 55(41), 12582-12594. doi:10.1002/anie.201603198

He, L., Weniger, F., Neumann, H., & Beller, M. (2016). Synthese, Charakterisierung und Anwendungen von Metall-Nanopartikeln nach Fixierung auf N-dotiertem Kohlenstoff: Katalyse jenseits der Elektrochemie. Angewandte Chemie, 128(41), 12770-12783. doi:10.1002/ange.201603198

Ziccarelli, I., Neumann, H., Kreyenschulte, C., Gabriele, B., & Beller, M. (2016). Pd-Supported on N-doped carbon: improved heterogeneous catalyst for base-free alkoxycarbonylation of aryl iodides. Chemical Communications, 52(86), 12729-12732. doi:10.1039/c6cc07269k

Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g

Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068

Abellán, G., Latorre-Sánchez, M., Fornés, V., Ribera, A., & García, H. (2012). Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide–graphene oxide composites. Chemical Communications, 48(93), 11416. doi:10.1039/c2cc35750j

Latorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007

Park, E., Ostrovski, O., Zhang, J., Thomson, S., & Howe, R. (2001). Characterization of phases formed in the iron carbide process by X-ray diffraction, mossbauer, X-ray photoelectron spectroscopy, and raman spectroscopy analyses. Metallurgical and Materials Transactions B, 32(5), 839-845. doi:10.1007/s11663-001-0071-1

Peng, S., Wang, C., Xie, J., & Sun, S. (2006). Synthesis and Stabilization of Monodisperse Fe Nanoparticles. Journal of the American Chemical Society, 128(33), 10676-10677. doi:10.1021/ja063969h

Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561

Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie International Edition, 55(2), 607-612. doi:10.1002/anie.201508908

Primo, A., Esteve-Adell, I., Coman, S. N., Candu, N., Parvulescu, V. I., & Garcia, H. (2015). One-Step Pyrolysis Preparation of 1.1.1 Oriented Gold Nanoplatelets Supported on Graphene and Six Orders of Magnitude Enhancement of the Resulting Catalytic Activity. Angewandte Chemie, 128(2), 617-622. doi:10.1002/ange.201508908

Mateo, D., Esteve-Adell, I., Albero, J., Royo, J. F. S., Primo, A., & Garcia, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications, 7(1). doi:10.1038/ncomms11819

Buaki-Sogo, M., Serra, M., Primo, A., Alvaro, M., & Garcia, H. (2012). Alginate as Template in the Preparation of Active Titania Photocatalysts. ChemCatChem, 5(2), 513-518. doi:10.1002/cctc.201200386

Lavorato, C., Primo, A., Molinari, R., & García, H. (2014). Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catalysis, 4(2), 497-504. doi:10.1021/cs401068m

Buchwald, S. L., & Bolm, C. (2009). On the Role of Metal Contaminants in Catalyses with FeCl3. Angewandte Chemie International Edition, 48(31), 5586-5587. doi:10.1002/anie.200902237

Buchwald, S. L., & Bolm, C. (2009). On the Role of Metal Contaminants in Catalyses with FeCl3. Angewandte Chemie, 121(31), 5694-5695. doi:10.1002/ange.200902237

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem