- -

Simple organic structure directing agents for synthesizing nanocrystalline zeolites

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Simple organic structure directing agents for synthesizing nanocrystalline zeolites

Show full item record

Gallego-Sánchez, EM.; Paris-Carrizo, CG.; Díaz-Rey, MDR.; Martínez Armero, ME.; Martínez-Triguero, J.; Martínez, C.; Moliner Marin, M.... (2017). Simple organic structure directing agents for synthesizing nanocrystalline zeolites. Chemical Science. 8(12):8138-8149. https://doi.org/10.1039/c7sc02858j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/105552

Files in this item

Item Metadata

Title: Simple organic structure directing agents for synthesizing nanocrystalline zeolites
Author: Gallego-Sánchez, Eva María Paris-Carrizo, Cecilia Gertrudis Díaz-Rey, Maria Del Rocio Martínez Armero, Marta Evelia Martínez-Triguero, Joaquín Martínez, Cristina Moliner Marin, Manuel Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] The synthesis of the ZSM-5 and beta zeolites in their nanosized form has been achieved by using simple alkyl-substituted mono-cationic cyclic ammonium cations as OSDA molecules. The particular combination of a cyclic ...[+]
Copyrigths: Reconocimiento (by)
Source:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/c7sc02858j
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c7sc02858j
Project ID:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
MINECO/SEV-2012-0267
...[+]
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
MINECO/SEV-2012-0267
info:eu-repo/grantAgreement/MINECO//CTQ2015-70126-R/ES/DISEÑO DE CATALIZADORES ZEOLITICOS PARA LA OPTIMIZACION DE PROCESOS QUIMICOS DE INTERES INDUSTRIAL/
ERC/ERC-AdG-2014-671093
info:eu-repo/grantAgreement/MINECO//MAT2015-71261-R/ES/DISEÑO RACIONAL DE MATERIALES ZEOLITICOS CON CENTROS METALICOS PARA SU APLICACION EN PROCESOS QUIMICOS SOSTENIBLES, MEDIOAMBIENTALES Y ENERGIAS RENOVABLES/
info:eu-repo/grantAgreement/MINECO//BES-2013-066800/ES/BES-2013-066800/
[-]
Thanks:
This work has been supported by the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267), MAT2015-71261-R and CTQ2015-70126-R, by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and by the Fundacion ...[+]
Type: Artículo

References

Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u

Moliner, M., Martínez, C., & Corma, A. (2015). Multipore Zeolites: Synthesis and Catalytic Applications. Angewandte Chemie International Edition, 54(12), 3560-3579. doi:10.1002/anie.201406344

Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014 [+]
Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u

Moliner, M., Martínez, C., & Corma, A. (2015). Multipore Zeolites: Synthesis and Catalytic Applications. Angewandte Chemie International Edition, 54(12), 3560-3579. doi:10.1002/anie.201406344

Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014

Čejka, J., Centi, G., Perez-Pariente, J., & Roth, W. J. (2012). Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 179(1), 2-15. doi:10.1016/j.cattod.2011.10.006

Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121

Brandenberger, S., Kröcher, O., Tissler, A., & Althoff, R. (2008). The State of the Art in Selective Catalytic Reduction of NOxby Ammonia Using Metal‐Exchanged Zeolite Catalysts. Catalysis Reviews, 50(4), 492-531. doi:10.1080/01614940802480122

Tosheva, L., & Valtchev, V. P. (2005). Nanozeolites:  Synthesis, Crystallization Mechanism, and Applications. Chemistry of Materials, 17(10), 2494-2513. doi:10.1021/cm047908z

Valtchev, V., & Tosheva, L. (2013). Porous Nanosized Particles: Preparation, Properties, and Applications. Chemical Reviews, 113(8), 6734-6760. doi:10.1021/cr300439k

Sarazen, M. L., Doskocil, E., & Iglesia, E. (2016). Effects of Void Environment and Acid Strength on Alkene Oligomerization Selectivity. ACS Catalysis, 6(10), 7059-7070. doi:10.1021/acscatal.6b02128

Mintova, S., Gilson, J.-P., & Valtchev, V. (2013). Advances in nanosized zeolites. Nanoscale, 5(15), 6693. doi:10.1039/c3nr01629c

Camblor, M. A., Corma, A., & Valencia, S. (1998). Characterization of nanocrystalline zeolite Beta. Microporous and Mesoporous Materials, 25(1-3), 59-74. doi:10.1016/s1387-1811(98)00172-3

Mintova, S., Valtchev, V., Onfroy, T., Marichal, C., Knözinger, H., & Bein, T. (2006). Variation of the Si/Al ratio in nanosized zeolite Beta crystals. Microporous and Mesoporous Materials, 90(1-3), 237-245. doi:10.1016/j.micromeso.2005.11.026

Schoeman, B. J. (2001). Journal of Porous Materials, 8(1), 13-22. doi:10.1023/a:1026566116805

Van Grieken, R., Sotelo, J. L., Menéndez, J. M., & Melero, J. A. (2000). Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous and Mesoporous Materials, 39(1-2), 135-147. doi:10.1016/s1387-1811(00)00190-6

Iwakai, K., Tago, T., Konno, H., Nakasaka, Y., & Masuda, T. (2011). Preparation of nano-crystalline MFI zeolite via hydrothermal synthesis in water/surfactant/organic solvent using fumed silica as the Si source. Microporous and Mesoporous Materials, 141(1-3), 167-174. doi:10.1016/j.micromeso.2010.11.001

Bellussi, G., & Pollesel, P. (2005). Industrial applications of zeolite catalysis: production and uses of light olefins. Studies in Surface Science and Catalysis, 1201-1212. doi:10.1016/s0167-2991(05)80466-5

Yilmaz, B., & Müller, U. (2009). Catalytic Applications of Zeolites in Chemical Industry. Topics in Catalysis, 52(6-7), 888-895. doi:10.1007/s11244-009-9226-0

Zones, S. I. (2011). Translating new materials discoveries in zeolite research to commercial manufacture. Microporous and Mesoporous Materials, 144(1-3), 1-8. doi:10.1016/j.micromeso.2011.03.039

Larlus, O., Mintova, S., Wilson, S. T., Willis, R. R., Abrevaya, H., & Bein, T. (2011). A powerful structure-directing agent for the synthesis of nanosized Al- and high-silica zeolite Beta in alkaline medium. Microporous and Mesoporous Materials, 142(1), 17-25. doi:10.1016/j.micromeso.2010.08.025

Choi, M., Na, K., & Ryoo, R. (2009). The synthesis of a hierarchically porous BEA zeolite via pseudomorphic crystallization. Chemical Communications, (20), 2845. doi:10.1039/b905087f

Zhu, J., Zhu, Y., Zhu, L., Rigutto, M., van der Made, A., Yang, C., … Xiao, F.-S. (2014). Highly Mesoporous Single-Crystalline Zeolite Beta Synthesized Using a Nonsurfactant Cationic Polymer as a Dual-Function Template. Journal of the American Chemical Society, 136(6), 2503-2510. doi:10.1021/ja411117y

Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., & Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 461(7261), 246-249. doi:10.1038/nature08288

Kim, Y., Kim, K., & Ryoo, R. (2017). Cooperative Structure Direction of Diammonium Surfactants and Sodium Ions to Generate MFI Zeolite Nanocrystals of Controlled Thickness. Chemistry of Materials, 29(4), 1752-1757. doi:10.1021/acs.chemmater.6b05338

Mintova, S., Grand, J., & Valtchev, V. (2016). Nanosized zeolites: Quo Vadis? Comptes Rendus Chimie, 19(1-2), 183-191. doi:10.1016/j.crci.2015.11.005

Martínez-Franco, R., Paris, C., Martínez-Armero, M. E., Martínez, C., Moliner, M., & Corma, A. (2016). High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chemical Science, 7(1), 102-108. doi:10.1039/c5sc03019f

Chiappe, C., Pomelli, C. S., & Rajamani, S. (2011). Influence of Structural Variations in Cationic and Anionic Moieties on the Polarity of Ionic Liquids. The Journal of Physical Chemistry B, 115(31), 9653-9661. doi:10.1021/jp2045788

Corma, A., Martı́nez-Soria, V., & Schnoeveld, E. (2000). Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite: Catalytic Behaviour and Kinetic Mechanism. Journal of Catalysis, 192(1), 163-173. doi:10.1006/jcat.2000.2849

KOKOTAILO, G. T., LAWTON, S. L., OLSON, D. H., & MEIER, W. M. (1978). Structure of synthetic zeolite ZSM-5. Nature, 272(5652), 437-438. doi:10.1038/272437a0

Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145

Treacy, M. M. J., & Newsam, J. M. (1988). Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature, 332(6161), 249-251. doi:10.1038/332249a0

Stöcker, M. (1999). Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous and Mesoporous Materials, 29(1-2), 3-48. doi:10.1016/s1387-1811(98)00319-9

Tian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007

Martín, N., Li, Z., Martínez-Triguero, J., Yu, J., Moliner, M., & Corma, A. (2016). Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 52(36), 6072-6075. doi:10.1039/c5cc09719c

Vermeiren, W., & Gilson, J.-P. (2009). Impact of Zeolites on the Petroleum and Petrochemical Industry. Topics in Catalysis, 52(9), 1131-1161. doi:10.1007/s11244-009-9271-8

Margarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C., & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie International Edition, 54(46), 13724-13728. doi:10.1002/anie.201506822

Peratello, S. (1999). Olefins oligomerization: thermodynamics and kinetics over a mesoporous silica–alumina. Catalysis Today, 52(2-3), 271-277. doi:10.1016/s0920-5861(99)00081-4

Corma, A., Martínez, C., & Doskocil, E. (2013). Designing MFI-based catalysts with improved catalyst life for oligomerization to high-quality liquid fuels. Journal of Catalysis, 300, 183-196. doi:10.1016/j.jcat.2012.12.029

Pater, J. P. G., Jacobs, P. A., & Martens, J. A. (1998). 1-Hexene Oligomerization in Liquid, Vapor, and Supercritical Phases over Beidellite and Ultrastable Y Zeolite Catalysts. Journal of Catalysis, 179(2), 477-482. doi:10.1006/jcat.1998.2250

Tabak, S. A., Krambeck, F. J., & Garwood, W. E. (1986). Conversion of propylene and butylene over ZSM-5 catalyst. AIChE Journal, 32(9), 1526-1531. doi:10.1002/aic.690320913

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record